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Lung adenocarcinoma is a complex disease driven by multiple 
oncogenic drivers including KRAS mutations which occur in ap-
proximately 30% of tumors1. Previous clinical trials focusing on 
these patients have reported partial response rates which could 
not be informed by existing immunohistochemical and mutation-
al biomarkers2,3. Despite sharing the same oncogenic mutations, 
there was significant heterogeneity in gene expression, suggest-
ing diverse signaling patterns in responders4.

Gene expression signatures have been reported in the literature 
that stratify KRAS-mutated lung cancers into phenotypic sub-
groups that are, in part, defined by a particular combination of 
genomic variants4. A subsequent study questioned the applicabil-
ity of genetic surrogates to identify these tumor subtypes and in-
stead derived concordant subtypes purely based on gene expres-
sion5. Both studies used unsupervised clustering of KRAS-mutant 
lung adenocarcinomas in The Cancer Genome Atlas (TCGA) data 
set and developed gene expression-based classifiers. The initial 
gene signature was evaluated in genotypically similar cohorts in 
treatment-naive and platinum-refractory KRAS-mutant lung ad-
enocarcinomas4. 

The current study yielded an independent 

implementation of a published 18-gene 

expression signature for lung adenocarcinoma 

subtypes.

While the results of the original study could be 

faithfully recapitulated, the classification scheme 

did not transfer to a new cohort with different 

demographics and treatment history, indicating 

a need for a more robust or generalizable set of 

features and models. 

Our reimplementation enables testing the 

signature in diverse clinical contexts and serves 

as a crucial foundation for developing a highly 

generalizable model.

KC subgroup:

• Inactivation of CDKN2A/B coupled with low TTF1 
expression.

• Enrichment of gene expression signatures reflecting both 
upper and lower GI neoplastic processes.

• Higher average expression of the embryonically restricted 
chromatin regulator HMGA2.

• Higher occurrence of invasive mucinous carcinomas.

KL subgroup:

• Co-mutations in STK11/LKB1.
• Functional inactivation of the LKB1-AMPK pathway.
• Activation of an NRF2-driven antioxidant and cytoprotective 

transcriptional program.

KP subgroup:

• Co-mutations in TP53.
• Higher overall mutational load.
• Elevated expression of immune checkpoint mediator/

effector molecules, including PD-L1, PD-1, and CTLA-4.
• Improved relapse-free survival.

In this study, the gene expression-based classifier is applied to 

a new data set to evaluate the model’s robustness and trans-

ferability across demographically distinct clinical cohorts. 

Classifier implementation

• Gene expression-based logistic regression classifier using 18-gene 
signature

• Trained on 69 RNA-seq samples from TCGA-LUAD that were 
used in the original study4

Cohort details

The cancer genome atlas lung adenocarcinoma cohort

• RNA-seq and somatic mutations data of 69 lung adenocarcinoma 
samples generated by the TCGA Research Network (TCGA-LUAD)

• Frozen samples taken from a cohort of roughly gender balanced 
(30M/39F), white (52/69), predominantly early stage (34 I, 16 II, 
15 III, 3 IV, 1 NA), treatment naive patients

Independent lung adenocarcinoma cohort

• RNA-seq of 87 LUAD samples from Korean patients who under-
went lobectomy (GEO accession: GSE40419)6

• Predominantly male (53M/34F), mostly early stage (55 I, 13 II, 13 
III, 4 IV, 2 NA) patients, 18 with lymph node metastases

• This study focused on a subset of 15 KRAS-mutant samples, pre-
dominantly male (12M/3F) patients, mostly early stage (9 I, 1 II, 4 
III, 0 IV, 1 NA), 4 with lymph node metastases

Bioinformatics processing

Expression values (TPM) and genetic variants for the TCGA cohort 
were obtained from Genomic Data Commons. For the independent 
cohort, gene expression was quantified with BBDuk-STAR-feature-
Counts-rnanorm pipeline7, and variants were called from RNA-Seq 
data following GATK best practices8. Non-synonymous variants with 
clinical implications according to the ClinVar database9 were kept for 
further analyses. Cluster comparisons were done in R (4.2.2) using 
DESeq210, ComplexHeatmap11, ClusterProfiler12 packages.

  Table  1.

Performance of the new implementation of the classifier compared to the 

original study. Standard machine learning performance metrics are given 

as weighted averages of metrics computed in a stratified 5-fold cross-vali-

dation on the training data set (TCGA, 69 samples). Baseline classifier used 

the empirical class distribution for predicted probabilities and predicted 

majority class (KP).

Accuracy Precision Recall AUC Log loss

Logistic regression 0.928 0.928 0.928 0.995 0.124

Baseline 0.435 0.189 0.435 0.5 1.067

Accuracy: Number of correct predictions / Total number of predictions

Precision: Per-subgroup weighted average of Number of correct subgroup predictions / 

Total number subgroup of predictions

Recall: Per-subgroup weighted average of Number of correct subgroup predictions / 

Total number of samples in that subgroup

Area Under the Receiver Operator Curve (AUC): 
Per-subgroup weighted average of AUCROC scores calculated for one-versus-rest comparison

Log loss: Indicates the proximity to the true probability values

   Figure  1.

Reproduced gene expression and co-mutational landscape of 69 

lung adenocarcinoma samples from TCGA used in the original 

study by Skoulidis et al. (2015).

The heatmap shows relative gene expression levels (standardized, 

log2 transformed and variance stabilized counts) of the 18 

signature genes. Samples are in rows, while genes are in columns. 

Hierarchical clustering with optimal leaf reordering is done on 

rows (samples). Columns are grouped to include genes informative 

of a specific subset. The expected gene expression in each cluster, 

shown on the top of the columns, was determined based on the 

original article. Common co-mutations are reported on the right 

side of the heatmap. Wild-type (WT) is represented in gray, and 

nonsynonymous mutations (MUT) are represented in black. Other 

co-mutations mentioned in the original article are excluded from 

the plots, since they were not detected in the independent cohort.

Note: These results are our reproduction of Skoulidis et al. (2015) 

and serve as an independent validation of the findings in that study.

   Figure  2.

Gene expression and co-mutational landscape of 15 KRAS-mutant lung 

adenocarcinomas (LUAD) in the independent data set.

The heatmap shows relative gene expression levels (standardized, log2 

transformed and variance stabilized counts) of the 18 signature genes.

Samples are in rows, while genes are in columns. Hierarchical clustering 

with optimal leaf reordering is done on rows (samples). Columns are 

grouped to include genes informative of a specific subset. The expected 

gene expression in each cluster, shown on the top of the columns, was 

determined based on the original article. Common co-mutations are 

reported on the right side of the heatmap. Wild-type (WT) is represented in 

gray, and nonsynonymous mutations (MUT) are represented in black. Other 

co-mutations mentioned in the original article are excluded from the plots, 

since they were not detected in the independent cohort.

   Figure  3.

Enriched biological processes in the individual subgroups of the TCGA-

LUAD data set (above) and independent data set (below).

Dot plot shows the top ten significantly enriched biological processes in 

each subgroup identified by gene set enrichment analysis (GSEA). For 

GSEA, all expressed genes were ranked based on Wald’s statistics from 

comparisons of one subgroup versus the other two. Dots are coloured by 

the normalized enrichment score (NES), with red representing positive 

enrichment scores and blue negative enrichment scores. Gene ratio is 

calculated as the number of core enriched genes divided by gene set size. 

Same groups are characterized by different biological processes in the two 

independent data sets. 
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The original study by Skoulidis et al. (2015) 

defined three subgroups of KRAS mutated 

lung cancer tumors:

The model does not perform well on an 

independent cohort

Gene expression patterns (heatmap, Figure 2) in an independent lung 
cancer cohort do not support the hypothesis of three subgroups as 
identified in the original study. Notably, the independent cohort did 
not exhibit distinct characteristics associated with KL subgroups. The 
majority of KL samples had lower predicted probabilities, highlighting 
the model’s difficulties in distinguishing them from the other two sub-
groups. No KRAS mutated samples had co-occurring STK11 or KEAP1 
mutations, typically found in the KL subgroup. Furthermore, the ob-
served frequencies of these mutations in the whole Korean cohort are 
lower than expected based on TCGA-LUAD data, with only two STK11 
mutations and no KEAP1 mutations in 87 patients. Comparably lower 
mutation rates of these two genes were also observed in other Asian 
cohorts13–15, indicating that original observations may not hold for par-
ticular demographics. Additionally, co-mutations in TP53 were present 
in all three subgroups, which contradicted the findings based on the 
TCGA data.

Groups identified in an independent cohort have 

different characteristics compared to the original 

definitions

In the independent data set, differential gene expression analysis com-
paring each subgroup to the other two revealed several hundred dif-
ferentially expressed genes (DEG) in the KC (231 up, 121 down; FDR < 
0.05) and KP subgroups (468 up, 378 down; FDR < 0.05) and only 32 
in the KL subgroup (20 up, 12 down; FDR < 0.05).

Gene set enrichment analysis highlighted negative enrichment of im-
mune related pathways in the KP subgroup and upregulation of B-cell 
related pathways in the KC subgroup. Cell differentiation processes 
showed less prominent enrichment in the KC subset of the indepen-
dent data set[not shown]. Instead, this subgroup was enriched in mi-
crotubule reorganization processes.

Overall, these results suggested that the predicted subgroups in the 
independent cohort could not be characterized by the same biological 
processes as in the original study (Prior Art Box). 
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