
Profiling microsatellite instability
using RNA sequencing data

Microsatellite instability (MSI) as a biomarker 
for cancer treatment

Microsatellite instability (MSI) is a hyper-mutable phenotype 
defined by a unique set of alterations in microsatellites (MS) 
caused by defective DNA mismatch repair (MMR) in the can-
cer cells. MSI and MSS (microsatellite stable, non-MSI) have 
emerged as important biomarkers for predicting response to 
immune checkpoint inhibitor (ICI) therapy in different indica-
tions.

The prevalence of MSI varies across tumor types, with the 
highest rates seen in Endometrial cancer (EC) (25–30 %), 
Colorectal cancer (CRC) (15–20 %), Gastric cancer (GC) and 
Ovarian cancer (OC) (5–10 %). MSI tumors are more respon-
sive to ICIs, with overall response rates (ORRs) ranging from 
40–70 % across tumor types.

Current MSI detection methods

• Immunohistochemical (IHC) and PCR-based assays are 
standard methods for MSI diagnosis.

• The Bethesda guidelines suggest that instability in two 
out of five poly-A loci (two mononucleotide and three di-
nucleotide) can indicate an MSI tumor via PCR.

• IHC staining evaluates the expression of four clinically rel-
evant MMR proteins (MLH1, MSH2, MSH6, PMS2) in tu-
mor and non-tumor nuclei. The absence of one or more of 
these proteins in matched normal tissue suggests an MSI 
tumor.

• These methods are fast, inexpensive, and readily available 
by different diagnostic providers and reference laborato-
ries. 

  Figure 3.

MSI and MSS samples in the six datasets can be separated based 

on the number of MS hotspots with deletion and other types of 

variation. The decision boundary of the logistic regression mod-

el trained in leave-one-dataset-out cross-validation is plotted for 

each dataset as a dashed line.

Note that the number of MS hotspots with deletion and other 

variations are only loosely correlated. A model that uses only de-

letions was found to perform worse compared to a model that in-

cludes these additional features (data not shown). 

  Figure 4.

Receiver operating characteristic and the associated ROC AUC 

value computed in leave-one-dataset-out cross-validation for 

each of the six datasets.

 Figure 5.

A Hotmap of a random selection of 48/486 samples (columns) and 

48 MS hotspots (rows). Colors display type of variation. The decision 

boundary of the logistic regression classifier is plotted by a black verti-

cal line, with the samples predicted as MSI shown to the left of the line.

  Table 2.

Model performance metrics computed in leave-one-dataset-out 

cross-validation.
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A machine learning model that uses mutational profiles 

determined from  RNA-Seq data was trained to predict MSI 

in cancer patients. The model employs a novel technique 

for selecting features as a subset of MS hotpots based on 

the types of alterations, and consists of a simple logistic 

regression architecture. The model was trained on a dataset 

of 486 patients compiled from six different studies. The 

achieved results demonstrate an ROC AUC of > 0.94 for all 

but one dataset.

Introduction

Results
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Limitations of current approaches 

• The IHC test is not a direct phenotypic evaluation of MSI.

• IHC tests may miss cases where MMR deficiency results 
from gene inactivation beyond the four proteins assayed.

• Many PCR-based tests require both tumor and matched 
normal samples for accurate diagnosis.

• Some mutations may not lead to the loss of protein ex-
pression.

• Individual tests provide limited information from a com-
parable amount of biomaterial that could be used in com-
prehensive sequencing assays. 

• Traditional testing is impractical in tumor forms where 
MSI is rare, despite the presence of some degree of MSI 
in most solid tumor types, hindering the identification of 
MSI patients across solid tumor types who could benefit 
from checkpoint inhibitors.

Solution: Pan-cancer MSI prediction using 
RNA-sequencing 

• RNA sequencing is increasingly used in Precision Oncolo-
gy for the identification of multiple complex disease mark-
ers using a single sequencing assay.

• Genialis developed an RNA-Seq-based pipeline for MSI 
characterization in various cancer indications. The work-
flow identifies mutations and gene expression, and classi-
fies samples into MSI or MSS (Figure 1).

• This approach utilizes only tumor samples and eliminates 
the need for matched normal samples.

Dataset ROC AUC
Sensitivity 

(recall) Specificity
PPV 

(precision) NPV Accuracy

Chatila et al. [1] 1.00 1.00 1.00 1.00 1.00 1.00

DiGuardo et al. [2] 0.99 0.96 0.95 0.99 0.86 0.96

Guo et al. [3] 1.00 0.92 1.00 1.00 0.86 0.94

Mun et al. [4] 1.00 1.00 1.00 1.00 1.00 1.00

Park et al. [5] 0.94 0.81 0.98 0.85 0.97 0.95

Partner RWD 0.85 0.80 0.98 0.80 0.98 0.96

The model computes unbiased MSI predictions across var-

ious tissue types, making it applicable in different cancer 

contexts. Notably, it does not require a matched normal 

sample. It outputs the probability of MSI which indicates an 

estimate of confidence in the call and allows for post-pre-

diction decision-making based on patient-specific risk fac-

tors. It excels at single-sample predictions, eliminating the 

need for population-based recalibration. The simplicity of 

the model also facilitates interpretability of predictions. 

This MSI classifier is a research tool for the retrospec-

tive analysis of RNA-Seq data without the need for 

matched normal samples. In the future, this classifier 

will be evaluated in prospective analytical settings and 

may be incorporated into panels of RNA-Seq based 

biomarker tests operated by diagnostic and NGS ser-

vice providers.

Logistic regression model distinguishes MSI 
and MSS samples based on MS hotspots 

The logistic regression model readily separated MSI and MSS 
samples based on the number of MS hotspots with deletion 
and those with other variations (Figure 3). For each dataset, 
the decision boundary was trained on the remaining five 
datasets, as per the leave-one-dataset-out cross-validation 
approach.

Model performance

The performance of the logistic regression model (Table 2) 
as given by the ROC AUC ranged from 0.85 to 1.00, with a 
mean of 0.96, comparable to current state of the art detection 
techniques [6]. The confusion matrices that displayed Clinical 
(reference) versus Predicted MSI/MSS status (not shown) re-
vealed a small bias towards false negative predictions.

Clinical MSI status

Predicted p(MSI)

Quality MS hotspot ct.
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Algorithm

Details of the analysis

Genetic Variant Identification and Filtering: A combination 
of filters are applied based on the type of mutational event 
observed, read coverage, quality of detection, and other 
measurable characteristics of the variant. 

Variant Annotation: High-quality variants are annotated us-
ing a combination of public and proprietary databases, pro-
viding additional context and information about these genet-
ic variations. Some public databases integrated are dbSNP, 
ClinVar, and SnpEff.

MS hotspot catalog: Six tools were benchmarked to call MS 
sites in the human genome (Figure 2A). After thorough eval-
uation, only those from RepeatFinder were retained, and fil-
tered to MS sites detectable by RNA-Seq (exome regions). 
Each of these 53,876 hotspots were tested for statistical sig-
nificance of the difference in the frequency of observed dele-
tions between all MSI and MSS patients. Thousands of these 
hotspots have sufficient coverage in all four tissue types (Fig-

ure 2B).

MSI Classification: A logistic regression model was trained on 
486 samples across six datasets (Table 1) to classify samples 
into MSI and MSS classes. The model was trained in leave-
one-dataset-out cross-validation on the total number of al-
terations within the MS hotspots. The model outputs pre-
dicted probabilities of the two classes. The predicted class is 
the one with the higher probability.

  Table 1.

Overview of MSI datasets used in this study.

  Figure 1.

An overview of the MSI prediction pipeline. This pipeline includes 

preprocessing steps to clean and normalize raw RNA-Seq data, 

followed by analytical steps to identify and annotate variants. The 

algorithm leverages a proprietary MS hotspot registry to classify 

samples into MSI or MSS.

  Figure 2.

2A (Left): A comprehensive catalog of MS in the human exome de-

rived from six distinct MS detection tools. Of the six tools, Repeat-

Finder was tied for first in comprehensiveness, and selected for in-

clusion in the pipeline thanks to its permissive open source license.

2B (right): A rank plot of MS hotspots by mean coverage for each 

of the four studied tissue types.

Methods

Dataset Tissue MSS MSI Ethnicity Accession Tissue origin

Chatila et al. [1] Colorectal (109) 104 5 US collection sites GSE209746 FFPE

DiGuardo et al. [2]
Colorectal (42), Endometrial (35), 
Ovarian (1), NA (11)

19 
(tumor)

70
(tumor) Non-asian GSE146889 FFPE

Guo et al. [3] Colorectal (18) 6 (non-MSI) 12 Chinese GSE222202 Fresh frozen, FFPE

Mun et al. [4] Gastric (80) 76 4 Korean GSE122401 Fresh frozen

Park et al. [5] Colorectal (145) 124 21 Korean GSE180440 Fresh frozen

Partner RWD Gastric (45) 40 5 Korean Private FFPE

Number of detected MS hotspots in the exome

MSIsensor

53,903 53,876

45,785

34,727
31,665

8,869
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Hotmap:
Importance of MS hotspots in MSI prediction 

A Hotmap is a heat map of genome variation in MS hotspots.


