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RNA sequencing (RNA-seq) is a workhorse method for quantifying gene ex-

pression by measuring the relative abundance of different RNA transcripts 

in a sample. Normalization is a critical piece of the RNA-seq bioinformatics 

pathway, used to mitigate bias and make the output more accurate and 

understandable. Appropriate interpretation of RNA-seq data depends on 

the type of normalization used—each normalization method has its own 

strengths and limitations, some being ideal for comparisons of genes within 

a sample and others being better suited for comparing expression of a gene 

across different samples. RNAnorm is a Python package and command 

line interface that flexibly fits into RNA-seq workflows and allows many 

different normalization approaches with one package. Here, we introduce 

commonly used RNA-seq normalization methods and demonstrate how to 

perform normalization using RNAnorm. 
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Introduction

Have you been frustrated by the available options for normalizing RNA 

sequencing (RNA-seq) data? Accurate interpretation of the data rests on 

this critical piece of the bioinformatics pipeline, but maybe the current op-

tions for normalization don’t fit neatly into your pipeline, or maybe you 

need a flexible option to normalize data in different ways depending on 

your biological question. RNAnorm is a Python package used to normalize 

RNA-seq data that can be used in Python scripts or in the command line to 

provide a flexible, open-source solution.

Below is a short tutorial on RNA-seq normalization methods and how to use 

them with RNAnorm. Check out the RNAnorm Github page and read on!

About RNA-seq

The central dogma of biology is that DNA is transcribed into messenger 

RNA (mRNA), and mRNA is translated into proteins. Expression of a pro-

tein-coding gene is controlled primarily by transcription, where the abun-

dance of a particular mRNA is increased or decreased. RNA-seq is a meth-

od to measure the relative abundance of mRNA transcripts (Figure 1).

  Figure 1:

RNA-Seq: from raw material to 

quantified and normalized gene 

expression data. 

Library preparation

• RNA is harvested from source material (tissue, cells, plants).
• RNA is fragmented into smaller pieces using enzymes or ionic solutions.
• RNA is reverse-transcribed using random hexamer primers to produce complementary DNA (cDNA). 

The ends of the cDNA fragments include an adapter sequence.

Cluster generation

• cDNA library is loaded into a flow cell and anchored by the adapters.
• cDNA is amplified so that identical sequences are located in the same position on the flow cell.

Sequencing by synthesis

• New DNA is synthesized with fluorescently labeled nucleotides−A, T, C, and G 
have a unique fluorescent signal.

• The sequencer reads the fluorescent signal for each cluster at each cycle of synthesis.

Data processing

• The fluorescent signal sequence at each cluster is converted into an RNA sequence. 
The full sequence for each fragment is called a “read.”

• Sequencing adapters are trimmed, the reads are filtered according to set quality thresholds.
• The reads are mapped to a reference genome to determine which gene a fragment belongs to.
• Gene expression is quantified by counting the number of reads per gene.

Normalization

• Reduces bias introduced by technical and biological factors.
• Converts raw read counts to an interpretable form for gene expression.
• The final output is a table with normalized read counts per gene.
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Why normalize gene expression data? 

Everything is relative: RNA-seq does not measure the total RNA in a sam-

ple but provides the relative proportion of reads per gene within a library 

(total number of reads per sample). The usefulness of this raw data is limit-

ed by sources of bias. Normalization compensates for biological and tech-

nical sources of bias.

Because there is no normalization method that can compensate for every-

thing, the selection of a normalization method will depend on the study 

question. Of the techniques available, RNA-seq normalization data can be 

grouped into “within-sample” or “between-sample” methods. Within-sam-

ple methods are used when you want to compare the expression of dif-

ferent genes in the same sample; between-sample methods are best for 

comparing the expression of a gene across different samples, such as com-

paring diseased vs healthy samples, screening in drug discovery, or time 

series methods.

Counts per million (CPM), fragments per kilobase million (FPKM), and 

transcripts per million (TPM) normalize to library size and are well-estab-

lished methods for within-sample normalization. Upper quartile (UQ) and 

trimmed mean of M-values (TMM) are the basis for many between-sample 

methods, using RNA composition as a normalization factor to reduce the 

effect of outlier genes on the library.

  Table 1:

Common sources of bias and how nor-

malization can compensate for it.

Bias source Reason Mitigation

(total number of reads per sample)

RNA-seq can only quantify proportion 

of RNA molecules in comparison to the 

whole RNA output

Divide counts by library size

Longer genes are cut into more 

fragments and therefore appear more 

expressed than shorter genes

Divide counts by gene length

A set of “outlier” genes that are 

differentially expressed can distort the 

library size

Find a more robust measure of RNA 

output than library size - scaling 

factors

Library size

Gene length

RNA composition
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*These methods are being implemented into

the RNAnorm package at the time of writing

of this document (October 2023). 

 Table 2:

Commonly used RNA-seq normalization 

methods, factors used for normalization, 

their within/between sample classifi-

cation, and supporting references for 

further reading.

Method and reference
Between /

within sample Reference

CPM - Counts per million Within /

FPKM - Fragments per kilobase million Within Mortazavi et al., 2008

TPM - Transcripts per million Within Wagner et al., 2012

UQ - Upper quartile Between Bullard et al., 2010

CUF - Count adjusted with UQ factors Between Johnson and Krishnan, 2022

TMM - Trimmed mean of M-values Between Robinson and Oschlak, 2010

CTF - Count adjusted with TMM factors Between Johnson and Krishnan, 2022

RLE - Relative log expression* Between Love et al., 2014

GeTMM - Gene length corrected* Between 
and within Smid et al., 2018

MRN - Median Ratio Normalization* Between Maza et al., 2013
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RNAnorm: a Python toolkit for RNA-seq normalization

The RNA-seq normalization methods presented above are implemented in 

various applications, generally in the R programming language, including 

EdgeR and DESeq2. We developed RNAnorm as a one-stop shop for RNA 

normalization that neatly fits into existing bioinformatics workflows, with 

features such as

• Native Python implementation,

• Unified API interface, compatible with scikit-learn,

• Verification with the original implementation,

• Command-line interface,

• Maintained and well-documented code,

• Open-source code with permissive Apache 2.0 license.

Sample dataset

You can install RNAnorm from PyPI to run the following examples on your 

own. In every example below, we will use the method load_toy_data() to 

load our sample dataset. We constructed this dataset to make it easy to 

understand how different methods transform the raw counts. The dataset 

has 4 samples, each with 5 genes (lengths 200, 300, 500, 1000, and 1000 

bases). Sample 1 is a reference. Sample 2 is simply 2x all the counts of S1 - 

after library size normalization, S1 and S2 should be equal. Samples 3 and 4 

are the same as S1 except for Gene #5, which is changed so that the library 

size is 0.5x or 2x of Sample 1, respectively. This produces an interpretable 

range of scaling factors for TMM/UQ.

CPM

Counts per million (CPM) is the simplest normalization method; it removes 

library size bias by dividing read counts by the library size expressed in mil-

lions. For read count Xg of gene g:

The following example shows CPM in RNAnorm:
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We can see how CPM works in this 5-gene library across 4 samples. Sam-

ple 2 has double the raw counts as sample 1, but each gene is in the same 

proportion. Normalized to total library size, CPM renders their normalized 

counts the same.

Samples 3 and 4 are identical except for Gene_5, which is an outlier in 

sample 3. As a result, CPM makes the normalized counts look substantially 

different across all genes due to Sample 3’s larger library size. This demon-

strates why CPM can perform poorly on real world data that contains out-

lier genes.

RPKM, FPKM, and TPM

Reads per kilobase million (RPKM) and fragments per kilobase million 

(FPKM) normalize for library size and gene length. RPKM is designed for 

single-end reads, while FPKM is a variation of RPKM that is generalized for 

paired-end reads, where sequencing runs in both directions and the two 

reverse-complementary sequences correspond to one fragment.

Transcripts per million (TPM) normalizes for library size and gene length. 

This is the number of transcripts per million transcripts, giving a simple 

expression ratio within a sample.

>>> from rnanorm.datasets import load_toy_data
>>> from rnanorm import CPM
>>> from sklearn import set_config
>>> set_config(transform_output="pandas")
>>> dataset = load_toy_data()
>>> dataset.exp
          Gene_1  Gene_2  Gene_3  Gene_4  Gene_5
Sample_1     200     300     500    2000    7000
Sample_2     400     600    1000    4000   14000
Sample_3     200     300     500    2000   17000
Sample_4     200     300     500    2000    2000

>>> CPM().fit_transform(dataset.exp) # perform CPM normalization
           Gene_1   Gene_2    Gene_3    Gene_4    Gene_5
Sample_1  20000.0  30000.0   50000.0  200000.0  700000.0
Sample_2  20000.0  30000.0   50000.0  200000.0  700000.0
Sample_3  10000.0  15000.0   25000.0  100000.0  850000.0
Sample_4  40000.0  60000.0  100000.0  400000.0  400000.0
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FPKM and TPM are defined as:

These three methods all normalize for library size and gene length,  but 

do so in a different order. The example below shows the different outputs 

from FPKM and TPM:

In the raw data, we can see once again that the genes in samples 1 and 2 

have the same ratios, but different read counts. Unlike our CPM example, 

where the read count was normalized only to library size, FPKM and TPM 

consider the gene length, so the ratios between genes after normalization 

are different from the raw counts.

>>> from rnanorm import FPKM, TPM
>>> dataset.exp
          Gene_1  Gene_2  Gene_3  Gene_4  Gene_5
Sample_1     200     300     500    2000    7000
Sample_2     400     600    1000    4000   14000
Sample_3     200     300     500    2000   17000
Sample_4     200     300     500    2000    2000
>>> FPKM(gtf=dataset.gtf_path).fit_transform(dataset.exp) # perform FPKM normalization
            Gene_1    Gene_2    Gene_3    Gene_4    Gene_5
Sample_1  100000.0  100000.0  100000.0  200000.0  700000.0
Sample_2  100000.0  100000.0  100000.0  200000.0  700000.0
Sample_3   50000.0   50000.0   50000.0  100000.0  850000.0
Sample_4  200000.0  200000.0  200000.0  400000.0  400000.0
>>> TPM(gtf=dataset.gtf_path).fit_transform(dataset.exp)# perform FPKM normalization
             Gene_1     Gene_2     Gene_3     Gene_4     Gene_5
Sample_1   83333.33   83333.33   83333.33  166666.66  583333.33
Sample_2   83333.33   83333.33   83333.33  166666.66  583333.33
Sample_3   45454.54   45454.54   45454.54   90909.09  772727.27
Sample_4  142857.14  142857.14  142857.14  285714.28  285714.28
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UQ and CUF

The upper quartile (UQ) and Count adjusted with UQ factors (CUF) meth-

ods are less sensitive to the effects of outlier genes than the methods de-

scribed previously. 

UQ uses the expression value of the gene representing the 3rd quartile (up-

per quartile or 75th percentile) as the basis for scaling. It assumes that the 

gene in this position is unlikely to be highly variable, and can use the gene 

in that position to normalize a sample. UQ calculation has 3 steps:

1. determine the scaling factor by dividing the gene’s 3rd quartile read 

count by library size,

2. rescale all factors to a geometric mean of 1, 

3. multiply the scaling factor with the library size to determine the effec-

tive library size for use in a “CPM” calculation.

UQ and CUF are defined as:

CUF uses the same principles as UQ, but does not normalize for library 

size. CUF omits the 3rd step and normalizes counts by the scaling factors. 

See the next example for the normalization of our sample data with UQ 

and CUF:
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>>> from rnanorm import UQ, CUF
>>> dataset.exp
          Gene_1  Gene_2  Gene_3  Gene_4  Gene_5
Sample_1     200     300     500    2000    7000
Sample_2     400     600    1000    4000   14000
Sample_3     200     300     500    2000   17000
Sample_4     200     300     500    2000    2000
>>> uq = UQ().fit(dataset.exp)
>>> uq.get_norm_factors(dataset.exp) # get UQ scaling factors
Sample_1  1.0
Sample_2  1.0
Sample_3  0.5
Sample_4  2.0
>>> uq.transform(dataset.exp) # perform UQ normalization
           Gene_1   Gene_2   Gene_3    Gene_4     Gene_5
Sample_1  20000.0  30000.0  50000.0  200000.0   700000.0
Sample_2  20000.0  30000.0  50000.0  200000.0   700000.0
Sample_3  20000.0  30000.0  50000.0  200000.0  1700000.0
Sample_4  20000.0  30000.0  50000.0  200000.0   200000.0
>>> CUF().fit_transform(dataset.exp) # perform CUF normalization
           Gene_1  Gene_2  Gene_3  Gene_4   Gene_5
Sample_1   200.0   300.0   500.0  2000.0   7000.0
Sample_2   400.0   600.0  1000.0  4000.0  14000.0
Sample_3   400.0   600.0  1000.0  4000.0  34000.0
Sample_4   100.0   150.0   250.0  1000.0   1000.0

As we can see in this example, UQ and CUF normalizations are robust 

against the influence of outlier genes, resulting in effective library sizes 

that preserve and reveal the similarities between all samples. This is more 

obvious with UQ, where each sample is normalized to library size, appear-

ing more intuitive when comparing between samples. CUF is more suitable 

when the goal is to correct the RNA composition without adjusting for 

library size and can be thought of as simply scaling the raw read counts.

TMM and CTF

Trimmed mean of M-values (TMM) and counts adjusted with TMM factors 

(CTF) use a similar strategy to UQ and CUF, but instead of using the upper 

quartile, TMM uses the mean value of a trimmed set of values. TMM was 

first used in EdgeR, a popular R package for differential gene expression 
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TMM can be summarized with the following steps:

1. Select a reference sample r

2. For each remaining sample,

a. Compute M values and A values

b. Determine “stable” gene set G by double-trimming M-values and 

A-values

c. Compute factors as the weighted mean of M-values using only the 

gene set G

3. Rescale all factors to make the geometric mean equal to 1

4. Calculate effective library sizes and use them in a CPM calculation

Simply put, the scaling factor is determined by gene set G as the intersec-

tion of the M-trimmed mean (M) values and the absolute expression levels 

(A-values):

analysis, and assumes that most genes are not differentially expressed be-

tween conditions. This uses the mean value of a population of stable genes 

to normalize a sample.

TMM and CTF normalization algorithms are mathematically expressed as 

follows:
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M-values

G = M ∩ A

Geneset
M

Geneset
A

30% 5% 5%30%

A-values

TMM and CTF are more complex models that normalize for RNA composi-

tion and can account for library size (TMM) or omit library size normaliza-

tion (CTF).

Below is an example of TMM and CTF normalization in RNAnorm:

>>> from rnanorm import TMM, CTF
>>> dataset.exp
          Gene_1  Gene_2  Gene_3  Gene_4  Gene_5
Sample_1     200     300     500    2000    7000
Sample_2     400     600    1000    4000   14000
Sample_3     200     300     500    2000   17000
Sample_4     200     300     500    2000    2000
>>> tmm = TMM().fit(dataset.exp)
>>> tmm.get_norm_factors(dataset.exp) # calculate TMM normalization factors
Sample_1  1.0
Sample_2  1.0
Sample_3  0.5
Sample_4  2.0
>>> tmm.transform(dataset.exp) # perform TMM normalization
           Gene_1   Gene_2   Gene_3    Gene_4     Gene_5
Sample_1  20000.0  30000.0  50000.0  200000.0   700000.0
Sample_2  20000.0  30000.0  50000.0  200000.0   700000.0
Sample_3  20000.0  30000.0  50000.0  200000.0  1700000.0
Sample_4  20000.0  30000.0  50000.0  200000.0   200000.0
>>> CTF().fit_transform(dataset.exp) # perform CTF normalization
          Gene_1  Gene_2  Gene_3  Gene_4   Gene_5
Sample_1   200.0   300.0   500.0  2000.0   7000.0
Sample_2   400.0   600.0  1000.0  4000.0  14000.0
Sample_3   400.0   600.0  1000.0  4000.0  34000.0
Sample_4   100.0   150.0   250.0  1000.0   1000.0
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Using RNAnorm in the command line

RNA-seq normalization is only one step in a bioinformatics pipeline. Instead 

of having the user create boilerplate scripts in Python, we implemented a 

command line interface of RNAnorm for easier integration in some work-

flows. In the example below, we show some options and arguments to use 

RNAnorm in the command line and demonstrate the single line command 

to perform a CPM normalization on a dataset (“exp.csv”):

$ rnanorm --help
Usage: rnanorm [OPTIONS] COMMAND [ARGS]...

  Common RNA-seq normalization methods.

Options:
  --help  Show this message and exit.

Commands:
  cpm   Counts per million
  ctf   Counts adjusted with TMM factors
  cuf   Counts adjusted with UQ factors
  fpkm  Fragments per kilo-base million
  tmm   Trimmed mean of M-values
  tpm   Transcripts per million
  uq    Upper quartile

$ rnanorm cpm --help
Usage: rnanorm cpm [OPTIONS] [EXP]

  Compute CPM.

Options:
  --out FILENAME  Output results in this file instead of stdout
  --force         Overwrite already existing output file
  --help          Show this message and exit.

$ cat exp.csv
,Gene_1,Gene2
Sample_1,500000,1500000
$ rnanorm cpm exp.csv
,Gene_1,Gene2
Sample_1,250000,750000



13Normalizing RNA-seq data in Python with RNAnormgenialis.com info@genialis.com

Scikit-learn compatibility

Scikit-learn is one of the most popular machine learning Python packag-

es. RNAnorm’s fit-transform design makes it compatible with scikit-learn, 

allowing users to build machine learning code on top of RNAnorm’s basic 

functionality.

The following example shows an experiment to evaluate normalization 

methods for tissue classification:

from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import GridSearchCV
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
X, y = load_data()
X  # Matrix with read counts. Samples in rows, genes in columns.
y  # Target column (e.g. tissue type). Samples in rows.
pipeline = Pipeline(
    steps=[
        (‘normalization’, UQ()),
        (‘scaler’, StandardScaler()),
        (‘classifier’, LogisticRegression()),
    ]
)
params_grid = {
    ‘normalization’: [UQ(), CUF(), TMM(), CTF()],
    ‘classifier__C’: np.logspace(-5, 5, 11),
}
search = GridSearchCV(pipeline, params_grid, refit=False)
search.fit(X, y)
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Best practices in RNA normalization

There is no single best RNA-seq normalization method, and it can be 

challenging to know which is best for your application. Here are a few best 

practices to help guide your decision:

For further reading, consult the references below.  Table 3:

Recommendations for RNA 

normalization depending on your 

experiment.

Analysis goal Recommendations

Compare expression values 
of genes within a sample

TPM

Analyze differential expression 
of a gene between samples

Follow guidelines of your differential expression tool 
(eg: EdgeR, DESeq2)

Use RNA-seq data in machine learning Use UQ, TMM, CUF, CTF

Avoid TPM and FPKM

For ML applications, scaling for gene length features is best done 
separately. We recommend Z-score standardization for scaling.

In all experiments Evaluate multiple methods when possible

About Genialis

Genialis, the RNA biomarker company, is creating a world where healthcare 

delivers the best possible outcomes for patients, their families and com-

munities. ResponderID™, Genialis’ machine-learning-driven disease model-

ing platform, delivers actionable biomarkers and optimally positions novel 

drugs to accelerate translational research, streamline drug development 

and ensure the best possible clinical care. Genialis is trusted by pharma and 

diagnostics partners, and together, we are transforming medicine through 

data. For more information, please visit www.genialis.com.
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