
genialis.com info@genialis.com

Content

Introduction 2

About RNA-seq 2

RNAnorm: a Python toolkit
for RNA-seq normalization 5

Sample dataset 5

CPM 5

RPKM, FPKM, and TPM 6

UQ and CUF 8

TMM and CTF 9

Using RNANorm in the
command line 12

Scikit-learn compatibility 13

Best Practices in
RNA Normalization 14

About Genialis 14

References 15

Normalizing RNA-seq data
in Python with RNAnorm
Jure Zmrzlikar, Matjaž Žganec, Luka Ausec, Miha Štajdohar

December 2023

RNA sequencing (RNA-seq) is a workhorse method for quantifying gene ex-

pression by measuring the relative abundance of different RNA transcripts

in a sample. Normalization is a critical piece of the RNA-seq bioinformatics

pathway, used to mitigate bias and make the output more accurate and

understandable. Appropriate interpretation of RNA-seq data depends on

the type of normalization used—each normalization method has its own

strengths and limitations, some being ideal for comparisons of genes within

a sample and others being better suited for comparing expression of a gene

across different samples. RNAnorm is a Python package and command

line interface that flexibly fits into RNA-seq workflows and allows many

different normalization approaches with one package. Here, we introduce

commonly used RNA-seq normalization methods and demonstrate how to

perform normalization using RNAnorm.

2Normalizing RNA-seq data in Python with RNAnormgenialis.com info@genialis.com

Introduction

Have you been frustrated by the available options for normalizing RNA

sequencing (RNA-seq) data? Accurate interpretation of the data rests on

this critical piece of the bioinformatics pipeline, but maybe the current op-

tions for normalization don’t fit neatly into your pipeline, or maybe you

need a flexible option to normalize data in different ways depending on

your biological question. RNAnorm is a Python package used to normalize

RNA-seq data that can be used in Python scripts or in the command line to

provide a flexible, open-source solution.

Below is a short tutorial on RNA-seq normalization methods and how to use

them with RNAnorm. Check out the RNAnorm Github page and read on!

About RNA-seq

The central dogma of biology is that DNA is transcribed into messenger

RNA (mRNA), and mRNA is translated into proteins. Expression of a pro-

tein-coding gene is controlled primarily by transcription, where the abun-

dance of a particular mRNA is increased or decreased. RNA-seq is a meth-

od to measure the relative abundance of mRNA transcripts (Figure 1).

 Figure 1:

RNA-Seq: from raw material to

quantified and normalized gene

expression data.

Library preparation

• RNA is harvested from source material (tissue, cells, plants).
• RNA is fragmented into smaller pieces using enzymes or ionic solutions.
• RNA is reverse-transcribed using random hexamer primers to produce complementary DNA (cDNA).

The ends of the cDNA fragments include an adapter sequence.

Cluster generation

• cDNA library is loaded into a flow cell and anchored by the adapters.
• cDNA is amplified so that identical sequences are located in the same position on the flow cell.

Sequencing by synthesis

• New DNA is synthesized with fluorescently labeled nucleotides−A, T, C, and G
have a unique fluorescent signal.

• The sequencer reads the fluorescent signal for each cluster at each cycle of synthesis.

Data processing

• The fluorescent signal sequence at each cluster is converted into an RNA sequence.
The full sequence for each fragment is called a “read.”

• Sequencing adapters are trimmed, the reads are filtered according to set quality thresholds.
• The reads are mapped to a reference genome to determine which gene a fragment belongs to.
• Gene expression is quantified by counting the number of reads per gene.

Normalization

• Reduces bias introduced by technical and biological factors.
• Converts raw read counts to an interpretable form for gene expression.
• The final output is a table with normalized read counts per gene.

3Normalizing RNA-seq data in Python with RNAnormgenialis.com info@genialis.com

Why normalize gene expression data?

Everything is relative: RNA-seq does not measure the total RNA in a sam-

ple but provides the relative proportion of reads per gene within a library

(total number of reads per sample). The usefulness of this raw data is limit-

ed by sources of bias. Normalization compensates for biological and tech-

nical sources of bias.

Because there is no normalization method that can compensate for every-

thing, the selection of a normalization method will depend on the study

question. Of the techniques available, RNA-seq normalization data can be

grouped into “within-sample” or “between-sample” methods. Within-sam-

ple methods are used when you want to compare the expression of dif-

ferent genes in the same sample; between-sample methods are best for

comparing the expression of a gene across different samples, such as com-

paring diseased vs healthy samples, screening in drug discovery, or time

series methods.

Counts per million (CPM), fragments per kilobase million (FPKM), and

transcripts per million (TPM) normalize to library size and are well-estab-

lished methods for within-sample normalization. Upper quartile (UQ) and

trimmed mean of M-values (TMM) are the basis for many between-sample

methods, using RNA composition as a normalization factor to reduce the

effect of outlier genes on the library.

 Table 1:

Common sources of bias and how nor-

malization can compensate for it.

Bias source Reason Mitigation

(total number of reads per sample)

RNA-seq can only quantify proportion

of RNA molecules in comparison to the

whole RNA output

Divide counts by library size

Longer genes are cut into more

fragments and therefore appear more

expressed than shorter genes

Divide counts by gene length

A set of “outlier” genes that are

differentially expressed can distort the

library size

Find a more robust measure of RNA

output than library size - scaling

factors

Library size

Gene length

RNA composition

4Normalizing RNA-seq data in Python with RNAnormgenialis.com info@genialis.com

*These methods are being implemented into

the RNAnorm package at the time of writing

of this document (October 2023).

 Table 2:

Commonly used RNA-seq normalization

methods, factors used for normalization,

their within/between sample classifi-

cation, and supporting references for

further reading.

Method and reference
Between /

within sample Reference

CPM - Counts per million Within /

FPKM - Fragments per kilobase million Within Mortazavi et al., 2008

TPM - Transcripts per million Within Wagner et al., 2012

UQ - Upper quartile Between Bullard et al., 2010

CUF - Count adjusted with UQ factors Between Johnson and Krishnan, 2022

TMM - Trimmed mean of M-values Between Robinson and Oschlak, 2010

CTF - Count adjusted with TMM factors Between Johnson and Krishnan, 2022

RLE - Relative log expression* Between Love et al., 2014

GeTMM - Gene length corrected* Between
and within Smid et al., 2018

MRN - Median Ratio Normalization* Between Maza et al., 2013

Li
b

ra
ry

 s
iz

e

G
en

e
le

n
gt

h

R
N

A
 c

o
m

p
o

si
ti

o
n

5Normalizing RNA-seq data in Python with RNAnormgenialis.com info@genialis.com

RNAnorm: a Python toolkit for RNA-seq normalization

The RNA-seq normalization methods presented above are implemented in

various applications, generally in the R programming language, including

EdgeR and DESeq2. We developed RNAnorm as a one-stop shop for RNA

normalization that neatly fits into existing bioinformatics workflows, with

features such as

• Native Python implementation,

• Unified API interface, compatible with scikit-learn,

• Verification with the original implementation,

• Command-line interface,

• Maintained and well-documented code,

• Open-source code with permissive Apache 2.0 license.

Sample dataset

You can install RNAnorm from PyPI to run the following examples on your

own. In every example below, we will use the method load_toy_data() to

load our sample dataset. We constructed this dataset to make it easy to

understand how different methods transform the raw counts. The dataset

has 4 samples, each with 5 genes (lengths 200, 300, 500, 1000, and 1000

bases). Sample 1 is a reference. Sample 2 is simply 2x all the counts of S1 -

after library size normalization, S1 and S2 should be equal. Samples 3 and 4

are the same as S1 except for Gene #5, which is changed so that the library

size is 0.5x or 2x of Sample 1, respectively. This produces an interpretable

range of scaling factors for TMM/UQ.

CPM

Counts per million (CPM) is the simplest normalization method; it removes

library size bias by dividing read counts by the library size expressed in mil-

lions. For read count Xg of gene g:

The following example shows CPM in RNAnorm:

6Normalizing RNA-seq data in Python with RNAnormgenialis.com info@genialis.com

We can see how CPM works in this 5-gene library across 4 samples. Sam-

ple 2 has double the raw counts as sample 1, but each gene is in the same

proportion. Normalized to total library size, CPM renders their normalized

counts the same.

Samples 3 and 4 are identical except for Gene_5, which is an outlier in

sample 3. As a result, CPM makes the normalized counts look substantially

different across all genes due to Sample 3’s larger library size. This demon-

strates why CPM can perform poorly on real world data that contains out-

lier genes.

RPKM, FPKM, and TPM

Reads per kilobase million (RPKM) and fragments per kilobase million

(FPKM) normalize for library size and gene length. RPKM is designed for

single-end reads, while FPKM is a variation of RPKM that is generalized for

paired-end reads, where sequencing runs in both directions and the two

reverse-complementary sequences correspond to one fragment.

Transcripts per million (TPM) normalizes for library size and gene length.

This is the number of transcripts per million transcripts, giving a simple

expression ratio within a sample.

>>> from rnanorm.datasets import load_toy_data
>>> from rnanorm import CPM
>>> from sklearn import set_config
>>> set_config(transform_output="pandas")
>>> dataset = load_toy_data()
>>> dataset.exp
 Gene_1 Gene_2 Gene_3 Gene_4 Gene_5
Sample_1 200 300 500 2000 7000
Sample_2 400 600 1000 4000 14000
Sample_3 200 300 500 2000 17000
Sample_4 200 300 500 2000 2000

>>> CPM().fit_transform(dataset.exp) # perform CPM normalization
 Gene_1 Gene_2 Gene_3 Gene_4 Gene_5
Sample_1 20000.0 30000.0 50000.0 200000.0 700000.0
Sample_2 20000.0 30000.0 50000.0 200000.0 700000.0
Sample_3 10000.0 15000.0 25000.0 100000.0 850000.0
Sample_4 40000.0 60000.0 100000.0 400000.0 400000.0

7Normalizing RNA-seq data in Python with RNAnormgenialis.com info@genialis.com

FPKM and TPM are defined as:

These three methods all normalize for library size and gene length, but

do so in a different order. The example below shows the different outputs

from FPKM and TPM:

In the raw data, we can see once again that the genes in samples 1 and 2

have the same ratios, but different read counts. Unlike our CPM example,

where the read count was normalized only to library size, FPKM and TPM

consider the gene length, so the ratios between genes after normalization

are different from the raw counts.

>>> from rnanorm import FPKM, TPM
>>> dataset.exp
 Gene_1 Gene_2 Gene_3 Gene_4 Gene_5
Sample_1 200 300 500 2000 7000
Sample_2 400 600 1000 4000 14000
Sample_3 200 300 500 2000 17000
Sample_4 200 300 500 2000 2000
>>> FPKM(gtf=dataset.gtf_path).fit_transform(dataset.exp) # perform FPKM normalization
 Gene_1 Gene_2 Gene_3 Gene_4 Gene_5
Sample_1 100000.0 100000.0 100000.0 200000.0 700000.0
Sample_2 100000.0 100000.0 100000.0 200000.0 700000.0
Sample_3 50000.0 50000.0 50000.0 100000.0 850000.0
Sample_4 200000.0 200000.0 200000.0 400000.0 400000.0
>>> TPM(gtf=dataset.gtf_path).fit_transform(dataset.exp)# perform FPKM normalization
 Gene_1 Gene_2 Gene_3 Gene_4 Gene_5
Sample_1 83333.33 83333.33 83333.33 166666.66 583333.33
Sample_2 83333.33 83333.33 83333.33 166666.66 583333.33
Sample_3 45454.54 45454.54 45454.54 90909.09 772727.27
Sample_4 142857.14 142857.14 142857.14 285714.28 285714.28

8Normalizing RNA-seq data in Python with RNAnormgenialis.com info@genialis.com

UQ and CUF

The upper quartile (UQ) and Count adjusted with UQ factors (CUF) meth-

ods are less sensitive to the effects of outlier genes than the methods de-

scribed previously.

UQ uses the expression value of the gene representing the 3rd quartile (up-

per quartile or 75th percentile) as the basis for scaling. It assumes that the

gene in this position is unlikely to be highly variable, and can use the gene

in that position to normalize a sample. UQ calculation has 3 steps:

1. determine the scaling factor by dividing the gene’s 3rd quartile read

count by library size,

2. rescale all factors to a geometric mean of 1,

3. multiply the scaling factor with the library size to determine the effec-

tive library size for use in a “CPM” calculation.

UQ and CUF are defined as:

CUF uses the same principles as UQ, but does not normalize for library

size. CUF omits the 3rd step and normalizes counts by the scaling factors.

See the next example for the normalization of our sample data with UQ

and CUF:

9Normalizing RNA-seq data in Python with RNAnormgenialis.com info@genialis.com

>>> from rnanorm import UQ, CUF
>>> dataset.exp
 Gene_1 Gene_2 Gene_3 Gene_4 Gene_5
Sample_1 200 300 500 2000 7000
Sample_2 400 600 1000 4000 14000
Sample_3 200 300 500 2000 17000
Sample_4 200 300 500 2000 2000
>>> uq = UQ().fit(dataset.exp)
>>> uq.get_norm_factors(dataset.exp) # get UQ scaling factors
Sample_1 1.0
Sample_2 1.0
Sample_3 0.5
Sample_4 2.0
>>> uq.transform(dataset.exp) # perform UQ normalization
 Gene_1 Gene_2 Gene_3 Gene_4 Gene_5
Sample_1 20000.0 30000.0 50000.0 200000.0 700000.0
Sample_2 20000.0 30000.0 50000.0 200000.0 700000.0
Sample_3 20000.0 30000.0 50000.0 200000.0 1700000.0
Sample_4 20000.0 30000.0 50000.0 200000.0 200000.0
>>> CUF().fit_transform(dataset.exp) # perform CUF normalization
 Gene_1 Gene_2 Gene_3 Gene_4 Gene_5
Sample_1 200.0 300.0 500.0 2000.0 7000.0
Sample_2 400.0 600.0 1000.0 4000.0 14000.0
Sample_3 400.0 600.0 1000.0 4000.0 34000.0
Sample_4 100.0 150.0 250.0 1000.0 1000.0

As we can see in this example, UQ and CUF normalizations are robust

against the influence of outlier genes, resulting in effective library sizes

that preserve and reveal the similarities between all samples. This is more

obvious with UQ, where each sample is normalized to library size, appear-

ing more intuitive when comparing between samples. CUF is more suitable

when the goal is to correct the RNA composition without adjusting for

library size and can be thought of as simply scaling the raw read counts.

TMM and CTF

Trimmed mean of M-values (TMM) and counts adjusted with TMM factors

(CTF) use a similar strategy to UQ and CUF, but instead of using the upper

quartile, TMM uses the mean value of a trimmed set of values. TMM was

first used in EdgeR, a popular R package for differential gene expression

10Normalizing RNA-seq data in Python with RNAnormgenialis.com info@genialis.com

TMM can be summarized with the following steps:

1. Select a reference sample r

2. For each remaining sample,

a. Compute M values and A values

b. Determine “stable” gene set G by double-trimming M-values and

A-values

c. Compute factors as the weighted mean of M-values using only the

gene set G

3. Rescale all factors to make the geometric mean equal to 1

4. Calculate effective library sizes and use them in a CPM calculation

Simply put, the scaling factor is determined by gene set G as the intersec-

tion of the M-trimmed mean (M) values and the absolute expression levels

(A-values):

analysis, and assumes that most genes are not differentially expressed be-

tween conditions. This uses the mean value of a population of stable genes

to normalize a sample.

TMM and CTF normalization algorithms are mathematically expressed as

follows:

11Normalizing RNA-seq data in Python with RNAnormgenialis.com info@genialis.com

M-values

G = M ∩ A

Geneset
M

Geneset
A

30% 5% 5%30%

A-values

TMM and CTF are more complex models that normalize for RNA composi-

tion and can account for library size (TMM) or omit library size normaliza-

tion (CTF).

Below is an example of TMM and CTF normalization in RNAnorm:

>>> from rnanorm import TMM, CTF
>>> dataset.exp
 Gene_1 Gene_2 Gene_3 Gene_4 Gene_5
Sample_1 200 300 500 2000 7000
Sample_2 400 600 1000 4000 14000
Sample_3 200 300 500 2000 17000
Sample_4 200 300 500 2000 2000
>>> tmm = TMM().fit(dataset.exp)
>>> tmm.get_norm_factors(dataset.exp) # calculate TMM normalization factors
Sample_1 1.0
Sample_2 1.0
Sample_3 0.5
Sample_4 2.0
>>> tmm.transform(dataset.exp) # perform TMM normalization
 Gene_1 Gene_2 Gene_3 Gene_4 Gene_5
Sample_1 20000.0 30000.0 50000.0 200000.0 700000.0
Sample_2 20000.0 30000.0 50000.0 200000.0 700000.0
Sample_3 20000.0 30000.0 50000.0 200000.0 1700000.0
Sample_4 20000.0 30000.0 50000.0 200000.0 200000.0
>>> CTF().fit_transform(dataset.exp) # perform CTF normalization
 Gene_1 Gene_2 Gene_3 Gene_4 Gene_5
Sample_1 200.0 300.0 500.0 2000.0 7000.0
Sample_2 400.0 600.0 1000.0 4000.0 14000.0
Sample_3 400.0 600.0 1000.0 4000.0 34000.0
Sample_4 100.0 150.0 250.0 1000.0 1000.0

12Normalizing RNA-seq data in Python with RNAnormgenialis.com info@genialis.com

Using RNAnorm in the command line

RNA-seq normalization is only one step in a bioinformatics pipeline. Instead

of having the user create boilerplate scripts in Python, we implemented a

command line interface of RNAnorm for easier integration in some work-

flows. In the example below, we show some options and arguments to use

RNAnorm in the command line and demonstrate the single line command

to perform a CPM normalization on a dataset (“exp.csv”):

$ rnanorm --help
Usage: rnanorm [OPTIONS] COMMAND [ARGS]...

 Common RNA-seq normalization methods.

Options:
 --help Show this message and exit.

Commands:
 cpm Counts per million
 ctf Counts adjusted with TMM factors
 cuf Counts adjusted with UQ factors
 fpkm Fragments per kilo-base million
 tmm Trimmed mean of M-values
 tpm Transcripts per million
 uq Upper quartile

$ rnanorm cpm --help
Usage: rnanorm cpm [OPTIONS] [EXP]

 Compute CPM.

Options:
 --out FILENAME Output results in this file instead of stdout
 --force Overwrite already existing output file
 --help Show this message and exit.

$ cat exp.csv
,Gene_1,Gene2
Sample_1,500000,1500000
$ rnanorm cpm exp.csv
,Gene_1,Gene2
Sample_1,250000,750000

13Normalizing RNA-seq data in Python with RNAnormgenialis.com info@genialis.com

Scikit-learn compatibility

Scikit-learn is one of the most popular machine learning Python packag-

es. RNAnorm’s fit-transform design makes it compatible with scikit-learn,

allowing users to build machine learning code on top of RNAnorm’s basic

functionality.

The following example shows an experiment to evaluate normalization

methods for tissue classification:

from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import GridSearchCV
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
X, y = load_data()
X # Matrix with read counts. Samples in rows, genes in columns.
y # Target column (e.g. tissue type). Samples in rows.
pipeline = Pipeline(
 steps=[
 (‘normalization’, UQ()),
 (‘scaler’, StandardScaler()),
 (‘classifier’, LogisticRegression()),
]
)
params_grid = {
 ‘normalization’: [UQ(), CUF(), TMM(), CTF()],
 ‘classifier__C’: np.logspace(-5, 5, 11),
}
search = GridSearchCV(pipeline, params_grid, refit=False)
search.fit(X, y)

14Normalizing RNA-seq data in Python with RNAnormgenialis.com info@genialis.com

Best practices in RNA normalization

There is no single best RNA-seq normalization method, and it can be

challenging to know which is best for your application. Here are a few best

practices to help guide your decision:

For further reading, consult the references below. Table 3:

Recommendations for RNA

normalization depending on your

experiment.

Analysis goal Recommendations

Compare expression values
of genes within a sample

TPM

Analyze differential expression
of a gene between samples

Follow guidelines of your differential expression tool
(eg: EdgeR, DESeq2)

Use RNA-seq data in machine learning Use UQ, TMM, CUF, CTF

Avoid TPM and FPKM

For ML applications, scaling for gene length features is best done
separately. We recommend Z-score standardization for scaling.

In all experiments Evaluate multiple methods when possible

About Genialis

Genialis, the RNA biomarker company, is creating a world where healthcare

delivers the best possible outcomes for patients, their families and com-

munities. ResponderID™, Genialis’ machine-learning-driven disease model-

ing platform, delivers actionable biomarkers and optimally positions novel

drugs to accelerate translational research, streamline drug development

and ensure the best possible clinical care. Genialis is trusted by pharma and

diagnostics partners, and together, we are transforming medicine through

data. For more information, please visit www.genialis.com.

15Normalizing RNA-seq data in Python with RNAnormgenialis.com info@genialis.com

References

• Bullard, J. H., Purdom, E., Hansen, K. D., & Dudoit, S. (2010). Evalua-
tion of statistical methods for normalization and differential expression
in mRNA-Seq experiments. BMC Bioinformatics, 11(1), 94. https://doi.
org/10.1186/1471-2105-11-94

• Johnson, K. A., & Krishnan, A. (2022). Robust normalization and trans-
formation techniques for constructing gene coexpression networks
from RNA-seq data. Genome Biology, 23(1), 1. https://doi.org/10.1186/
s13059-021-02568-9

• Love, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of
fold change and dispersion for RNA-seq data with DESeq2. Genome
Biology, 15(12), 550. https://doi.org/10.1186/s13059-014-0550-8

• Maza, E., Frasse, P., Senin, P., Bouzayen, M., & Zouine, M. (2013). Com-
parison of normalization methods for differential gene expression anal-
ysis in RNA-Seq experiments: A matter of relative size of studied tran-
scriptomes. Communicative & Integrative Biology, 6(6), e25849. https://
doi.org/10.4161/cib.25849

• Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L., & Wold, B. (2008).
Mapping and quantifying mammalian transcriptomes by RNA-Seq. Na-
ture Methods, 5(7), Article 7. https://doi.org/10.1038/nmeth.1226

• Robinson, M. D., & Oshlack, A. (2010). A scaling normalization method
for differential expression analysis of RNA-seq data. Genome Biology,
11(3), R25. https://doi.org/10.1186/gb-2010-11-3-r25

• Smid, M., Coebergh van den Braak, R. R. J., van de Werken, H. J. G.,
van Riet, J., van Galen, A., de Weerd, V., van der Vlugt-Daane, M., Bril,
S. I., Lalmahomed, Z. S., Kloosterman, W. P., Wilting, S. M., Foekens, J.
A., IJzermans, J. N. M., Coene, P. P. L. O., Dekker, J. W. T., Zimmerman,
D. D. E., Tetteroo, G. W. M., Vles, W. J., Vrijland, W. W., … on behalf of
the MATCH study group. (2018). Gene length corrected trimmed mean
of M-values (GeTMM) processing of RNA-seq data performs similar-
ly in intersample analyses while improving intrasample comparisons.
BMC Bioinformatics, 19(1), 236. https://doi.org/10.1186/s12859-018-
2246-7

• Wagner, G. P., Kin, K., & Lynch, V. J. (2012). Measurement of mRNA
abundance using RNA-seq data: RPKM measure is inconsistent among
samples. Theory in Biosciences = Theorie in Den Biowissenschaften,
131(4), 281–285. https://doi.org/10.1007/s12064-012-0162-3

