
C O N T E N T :

1. Introduction: Questions that matter

2. A platform for compound-specific KRASi phenomarkers

2.1 krasID delivers RNA phenomarkers
2.2 krasID overcomes challenges of predictive AI in emerging therapies
2.3 Biomodules yield customizable and interpretable predictors

3. Case studies

3.1 Preclinical proof of concept 
3.2 Pan-cancer analysis
3.3 Real-world patient study
3.3.1 Predicting patient response to KRASi
3.3.2 Predicting duration of response
3.3.3 Interpreting krasID predictions

4. Getting started with Genialis krasID

4.1 Training a new predictor
4.2 Technical implementation of biomarker products 

Call to collaborate

2

3

3

4

6

8

8

9

10

11

13

15

17

17

18

18

Know your patient

Know your drug

To learn more about 
collaboration opportunities 
with Genialis,
please reach out.

biomarkers@genialis.com

www.genialis.com

Genialis™ krasID
P L A T F O R M  A L G O R I T H M S  F O R  M E C H A N I S T I C

I N S I G H T S  A N D  D R U G  R E S P O N S E  P R E D I C T I O N

W H I T E  P A P E R

mailto:biomarkers%40genialis.com%20?subject=
https://www.genialis.com/
https://www.genialis.com/
https://www.genialis.com/


2

1. Introduction: Questions that matter

RAS mutations are among the most common oncogenic drivers in human cancer, 
occurring in more than a quarter of all cases worldwide. The approval of KRAS 
inhibitors such as sotorasib and adagrasib has ushered in a new era of targeted 
therapy. Yet the promise of these drugs has been tempered by reality: fewer than 
half of patients benefit, and for most that do, responses are modest or short-lived.

For translational researchers and clinical developers, this raises urgent and practical 
questions:

•	 Which patients will actually benefit from my KRAS inhibitor, and why?

•	 How long will their response last?

•	 Can we predict a priori mechanisms that confer potential innate or adaptive 
resistance?

•	 Why do some patients progress early despite the mutation being “targetable”?

•	 Can we identify rational combinations to extend the benefit?

•	 Can we design trials that are faster, leaner, and more likely to succeed?

Traditional DNA-based biomarkers cannot provide these answers. KRAS mutation 
profiling is standard-of-care, but it only indicates whether a patient’s tumor harbors 
a KRAS variant. It does not capture whether that tumor is truly dependent on KRAS 
signaling, nor does it explain why many mutation-positive patients fail to respond. 
Even among responders, KRAS mutation status offers no insight into durability 
or resistance. More elaborate studies of co-mutation spectra hint at resistance 
mechanisms, but have yet to prove predictive in any clinical setting.

RNA, by contrast, provides a snapshot of the tumor’s active biology. It reflects 
not just mutational potential but the actual cellular states, pathway activity, and 
microenvironmental context that determine whether a KRAS inhibitor will work. 
When paired with explainable AI, RNA biomarkers transform raw transcriptomic 
data into clinically meaningful insights that address the questions researchers and 
clinicians most urgently need answered.

Genialis™ krasID was built precisely for this purpose. By modeling core KRAS biology 
and its bypass mechanisms, krasID moves beyond mutation status to predict treatment 
response, forecast duration of benefit, and illuminate resistance biology. krasID is a 

modular, explainable, and customizable platform that derives mechanistic insight, 

guides rational trial design, and supports clinical decision-making. 

This whitepaper presents the science behind krasID and highlights case studies across 
preclinical and clinical settings. It shows how this platform can help drug developers 
leverage a greater understanding of the tumor's biology into better clinical outcomes.

krasID is a modular, 
explainable, and 
customizable 
platform that 
derives mechanistic 
insight, guides 
rational trial design, 
and supports clinical 
decision-making. 
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2. A platform for compound-specific KRASi 
phenomarkers

For more than a decade, precision oncology has relied primarily on DNA mutation 
testing to guide treatment. In the KRAS field, the emergence of G12C inhibitors 
transformed this genetic information into therapeutic action: if the mutation is 
present, prescribe the drug. But as clinical experience has shown, the presence of 
a mutation is not sufficient for response, and response is often not durable. What 
is missing is a biomarker that captures not just the potential for a drug to bind its 
target, but also the actual tumor biology that governs response and resistance. 
Gene expression profiling offers such a solution by measuring pathway activity, 
microenvironmental forces, and the tumor’s dependency on KRAS signaling.

The solution is a new class of biomarkers, RNA phenomarkers, that approximate 
biological states and phenotypes rather than just genetic variants. Genialis krasID 
is the first algorithm platform designed specifically to develop such phenomarker 
algorithms for KRAS inhibitors (KRASi) in order to derive mechanistic insights into 
KRASi biology or predict response to KRASi in preclinical models and patients. 

2.1  krasID delivers RNA phenomarkers

RNA is emerging as the key clinical analyte powering a new class of biomarkers that 
serve as highly accurate patient classifiers. Historically, RNA has been seen as less 
clinically tractable due to assay costs, sample variability, and data reproducibility 
issues. These concerns have been addressed through advancements in RNA 
sequencing technology and analytical processing. RNA sequencing has become 
highly reliable, affordable, and commoditized, making its use in clinical applications 
more attractive. 

Standardized methods for sample preservation, nucleic acid extraction, and 
sequencing preparation contribute to high reproducibility across labs, even with small 
archival samples. The availability of sequencing services means RNA-seq is integrated 
into clinical workflows and can be reliably extracted and quantified from FFPE slides 
without needing fresh biopsies or frozen tissue. The ability to multiplex different 
tests from the same analyte and decreasing sequencing costs make transcriptomic 
biomarkers cost-effective for complex disease diagnosis and clinical R&D. Advances 
like FoundationOne®RNA and Tempus XR demonstrate the technical and commercial 
feasibility of this approach in clinical diagnostics. 

The era of RNA phenomarkers has arrived.

The solution is 
a new class of 
biomarkers, 
RNA phenomarkers, 
that approximate 
biological states and 
phenotypes rather 
than just genetic 
variants.
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Traditional DNA biomarkers Genialis RNA biomarkers

DNA represents potential 
biological states, or what a cell 
could do

RNA represents actual biological 
states, or what a cell does

One to a few DNA variants Hundreds-to-thousands of genes 
accounted for by quantitative 
signatures comprising their
expression and variants

Narrow scope:
one status, one gene

Broad scope: 
Complex multi-modal and multi-
function analysis 

Binary Q+A: Complex Q+A: 
Is the mutation present? Will the underlying biology of the

tumor respond to therapy? 

Property of the drug target Biology of a patient tumor
Is there a target that the drug
can bind to?

Will this drug actually work?

Are you eligible for a certain drug? Is it meaningful to a particular tumor?

Able to identify patients that
may receive drug

Able to identify patients that
should receive drug
AND 
forecast the response to that drug

NO information on treatment 
duration or combination strategies

Stratifies patients based on treatment 
duration and survival;
Provides actionable strategies for 
combination treatment

2.2  krasID overcomes challenges of predictive AI in emerging therapies

Artificial intelligence (AI) stands to transform precision medicine by using large 
’omics datasets to develop evermore complete and precise biomarkers powered by 
sophisticated machine learning (ML) algorithms. However, several major obstacles 
remain to introducing AI-based tools into clinical decision making: 

1.	 Most AI tools lack explainability of the selected features (so-called black-box 
methods),  and are therefore less attractive to regulators and physicians.

2.	 Most clinical ‘omics datasets contain vastly more measurements (e.g., genes) and 
orders of magnitude fewer patients, which leads to overfitting and reduced re-
producibility.

  T A B L E  1 

The case for RNA phenomarkers. 
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3.	 Definitionally, novel (investigational) therapeutics have not been administered to 
many patients; thus, the available clinical data is limited and often lacks response 
endpoints. Therefore, one cannot readily train an algorithm to learn treatment 
outcome from a population sample of meaningful size.

Together, these challenges impede the development of AI-powered, widely-used, 
reproducible, and clinically accepted predictors. Genialis krasID is different.  

Unlike black-box methods, Genialis krasID combines human expertise with an 
explainable AI architecture to capture the complexity of KRAS biology and reduce 
it to clinical utility. krasID is built on the Genialis™ Supermodel framework, a large 
molecular model (LMM) that transforms raw RNA-seq data into interpretable 
biomodules. Often AI models themselves, biomodules are algorithmic representations 
of diverse biological mechanisms, pathways, and relationships, each representing a 
specific aspect of biology and using different input genes. Some biomodules directly 
relate to KRAS (e.g., dependency, MAPK activation), while others involve external 
factors with indirect implications (e.g., immune system, tumor microenvironment, 
hormone signaling, etc). The Genialis Supermodel comprises a comprehensive library 
of cancer biomodules, from which a select few may be combined into a phenomarker 
algorithm for any specific prediction task. Computational data-driven methods are 
used in concert with “expert” (manual) filters derived from our understanding of cancer 
biology for this feature selection. Compared to using gene expression values directly 
for prediction, the biomodule feature set is dramatically reduced in dimensionality 
and carries relevant and interpretable biological signal, making it possible to derive 
accurate models (predictors) from small experimental or clinical cohorts. 

  F I G U R E  1 

Dimensionality reduction 
is achieved by combining 
hundreds of gene expression 
values into a handful of 
biomodule scores which are then 
used to train new predictors or 
make predictor calls.  
Note: similar to krasID, 
chemoID is a platform
for developing predictors
for chemotherapy.

Gene expression

Biomodules

Predictors

chemoID

krasID

A single predictor is thus an ensemble model that integrates a subset of these 
biomodules to generate a robust phenomarker score, which is the probability of a 
particular outcome to KRAS inhibition (Figure 1). Different kinds of predictors can 
be trained, for example, for predicting the probability of response to therapy or the 
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  F I G U R E  2

Genialis krasID integrates multiple biomodules to create predictors, e.g., for predicting response to 
KRAS inhibition. Left - Gene expression data is measured by RNA sequencing of tumor tissue (includ-
ing FFPE samples). Raw RNA-Seq data are processed to extract normalized gene expression profiles 
and identify genomic variants. Middle - Preprocessed data serves as input for a number of KRAS-re-
lated or KRAS-adjacent biomodules. Biomodule output is then used as input for an AI-based predictor. 
Right - The output of the predictor is a score, e.g., the probability of response to KRASi therapy.

k ra s I D  S C O R E

Dependency

Survival

Activation

Suppression

Immune

Additional biologies

Response to KRAS inhibitor

P R E D I C TO R

krasID BIOLOGIC MODULES

ML ALGORITHM

Alignment of RNA-Seq reads

RNA sequencing of tumor
or preclinical model

Gene expression 
quantification

Variant identification
& Annotation

I N P U T  DATA

krasID-LOW krasID-HIGH

duration of response.  The exact composition of a krasID predictor can be fine-tuned 
for particular compounds, mutation profiles, and disease histologies. The resulting 
predictor scores follow a bimodal distribution that ensures a clear decision boundary 
between krasID-High vs. krasID-Low, regardless of the specific numerical threshold. 
Additionally, krasID provides per-sample scores for each biomodule, offering deeper 
insights into each patient's tumor landscape. 

2.3  Biomodules yield customizable and interpretable predictors

krasID is built on the Genialis Supermodel framework. It is a large molecular model 
that transforms raw RNA-seq data into interpretable biomodule scores. Biomodules 
model the central tenets of cancer biology, such as those described as Hallmarks of 
Cancer1. These Hallmarks include such biologies as resisting cell death, sustaining 
proliferative signaling, and evading immune surveillance. Modules range in 
complexity from measuring pathway signaling activity to inferring the immune status 
of the tumor microenvironment. Genialis trains and validates these biomodules using 
a repository of hundreds of thousands of public and proprietary datasets spanning 
various model systems, including preclinical models (e.g., cell lines, xenografts) and 
real-world tumor biopsies collected from ethno-geographically diverse populations. 
This approach ensures each module is informative, unbiased, and transferable across 
multiple potential use cases.

A subset of these modules can be used individually for surveying specific aspects 
of tumor biology. Alternatively, a careful selection of these modules, e.g., based 
on the mechanism of action of a drug, can be used as input features for modeling 

The modular 
design of krasID 
means it is not a 
single biomarker, 
but a platform for 
building custom 
predictors to serve 
as phenomarkers.1  Hanahan D., Hallmarks of Cancer: New Dimensions. Cancer Discov. 2022 Jan;12(1):31-46.

     doi: 10.1158/2159-8290.CD-21-1059. PMID: 35022204.
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predictors, e.g., the response to a specific therapeutic target. This flexible approach 
assigns specific combinations of modules to particular data types, drug mechanisms, 
or intended uses (Table 2). 

The modular design of krasID means it is not a single biomarker, but a platform for 

building custom predictors to serve as phenomarkers. Different KRAS inhibitors 
exploit different mechanisms, and krasID can be tailored to each. Picking from a 
couple of dozen carefully selected and validated biomodules, new predictors can be 
rapidly configured and fine-tuned to maximize predictive accuracy for specific drug 
development programs. 

Unlike black-box AI, krasID is inherently explainable. Each biomodule corresponds 
to a tangible mechanism, pathway, or phenotype. When predictors are built on top 
of these biomodules, predictions are transparent and biologically grounded. This 
foundation sets the stage for the next chapter, where we show how krasID performs 
in practice across preclinical studies and real-world patient cohorts.

Biomodules used for
response modeling:

Biomodule Biomodule Description Biomodule Construction P
re

cl
in

ic
al

 
(G

1
2

C
) 

P
re

cl
in

ic
al

 
(P

an
R

A
S)

 

C
lin

ic
al

 

KRAS
dependency

Infers the dependency of
cancer cells on KRAS for
survival and proliferation. 

A 10 gene feature set selected using a linear 
regression model with recursive feature 
elimination and ElasticNet regularization. 
Validation used repeated nested cross-
validation.

  

MAPK/ERK 
activity

Measures the amount of 
MAPK signaling in cancer 
cells. 

~500 gene feature set selected using 
a weighted linear regression model 
incorporating robust and stably expressed 
gene sets. Validation used leave-one-out 
cross-validation.

  

PI3K
activity

Measures the amount of 
PI3K signaling in cancer 
cells.

~500 gene feature set selected using 
a weighted linear regression model 
incorporating robust and stably expressed 
gene sets. Validation used leave-one-out 
cross-validation.

-  

TP53
activity

Measures the amount of 
TP53 activity in cancer 
cells.

~500 gene feature set selected using 
a weighted linear regression model 
incorporating robust and stably expressed 
gene sets. Validation used leave-one-out 
cross-validation.

- - 

Immune
activity

Provides an assessment of 
the tumor microenvironment 
immune status. 

A 13 gene feature set comprising stably 
annotated genes was used to compute 
an immune activation score using a linear 
model. 

- - 

Other
biologies

20+ modules capturing 
aspects of intrinsic (e.g., 
apoptosis, hormone signaling), 
and extrinsic KRAS biology 
(e.g., angiogenesis, TGF-beta 
signaling) 

“Explainable” machine learning leveraging 
linear, logistic, and foundation-modeling 
approaches trained on Genialis™ Expressions 
library of >1M harmonized whole 
transcriptomic records

- - 

  T A B L E  2 

A selection of krasID biomodules used to model predictors highlighted in Chapter 3 - Case studies 
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3. Case studies

This chapter provides three examples of krasID in action, predictors trained for 
different drugs and experimental setups. 

1.	 Preclinical Proof-of-Concept: A 2-biomodule predictor accurately predicting in 
vitro and in vivo responses to KRAS G12C inhibitors (sotorasib, adagrasib, etc.) 
in lung cancer models. 

2.	 Pan-Cancer Analysis: Trained using 3 core biomodules, this predictor stratified 
responsive vs. resistant cell lines across NSCLC, PDAC, and CRC for a novel pan-
KRAS inhibitor.

3.	 Real-World Patient Study: In a cohort of 66 real-world KRAS G12C-selected 
NSCLC patients treated with sotorasib, a 5-module krasID model predicted not 
only which patients responded, but also for how long. Predictor calls can be clin-
ically interpreted.

3.1  Preclinical proof of concept 

The two biomodules used in this predictor are KRAS dependency and MAPK 
pathway activation. A logistic regression classifier to predict low- or high-IC50 
values was trained on published IC50 values measured from various sources. We 
hypothesized that preclinical models reliant on KRAS-mediated oncogenic signaling 
for proliferation and survival are those most susceptible to KRAS inhibition. 

  T A B L E  3

Performance of a predictor trained on two krasID biomodules (dependency and activation) predicting 
durable KRAS inhibitor response in three types of preclinical models. Short-term (e.g., IC50) and sus-
tained cytotoxicity (e.g., PRISM Repurposing dataset) metrics were classified into 'low' and 'high' cat-
egories via K-means clustering for each model system. A durable response was defined when a model 
system exhibited both short-term and prolonged cytotoxicity. 

Drug Name Company
Mechanism
of Action

Preclinical
Model System N* Sensitivity Specificity AUROC

Sotorasib Amgen G12C-OFF 2D 11 1.0 (5 / 5) 1.0 (6 / 6) 1
RMC-6291 Revolution Medicine G12C-ON 2D 15 1.0 (7 / 7) 0.88 (7 / 8) 0.96
Adagrasib Bristol Myers Squibb G12C-OFF 2D 12 1.0 (6 / 6) 0.67 (4 / 6) 0.94
Adagrasib Bristol Myers Squibb G12C-OFF 3D 12 0.88 (7 / 8) 0.75 (3 / 4) 0.81
Adagrasib Bristol Myers Squibb G12C-OFF Xenograft 10 1.0 (5 / 5) 0.8 (4 / 5) 0.96
All drugs 
(Genialis krasID) - - All 67 0.97 (33 / 34) 0.85 (28 / 33) 0.94

All drugs 
(Dummy Model) - - All 67 0.53 (18 / 34) 0.64 (21 / 33) 0.59

*Displayed performance metrics on preclinical model systems that have more than 10 data points, as well as on the entire dataset.
2D: 2-dimensional cell culture | 3D: 3-dimensional cell culture | N: Available models | AUROC: Area Under the Receiver Operating Curve
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To test this hypothesis, we evaluated publicly available cytotoxicity responses to 
KRAS G12C-inhibitors (Amgen's sotorasib, Bristol Myers Squibb's adagrasib, and 
Revolution Medicine's RMC-6291) across various preclinical non-small cell lung 
cancer (NSCLC) model systems, including 2D/3D cell cultures and xenografts. On 
average, the predictor accurately stratified cell line responders, achieving a receiver 
operating characteristic (AUROC) of 0.94 compared to 0.59 for a dummy “null” 
model (Table 3).

3.2 Pan-cancer analysis

Identifying responders to various G12C inhibitors using intrinsic biological modules 
suggested the applicability of krasID across different histologies and mutation 
settings. To test this, we tailored a model on cytotoxicity values measured in 161 
NSCLC, PDAC, and CRC cell lines treated with the RevMed PanRAS inhibitor 
RMC7977. Responses were evaluated using principal component analysis (PCA) with 
three krasID modules: KRAS dependency, Activation (MAPK pathway activity), and 
Survival (PI3K pathway activity). From a projection of these three modules, distinct 

  F I G U R E  3 

PCA showing cytotoxicity responses to RAS(ON) multi-selective inhibitor in NSCLC, PDAC, and 
CRC cell lines. Responses are stratified using three krasID modules. Datapoint size corresponds to 
RMC7977 sensitivity.2

Dependency

Activation

Su
rv

iv
al

CB

A

Non-Responders Clade
Worst CRC, PDAC and
NSCLC Responders

Response Clade 1
Best CRC, PDAC Responders
Best G12D Responders

Response Clade 2
Best NSCLC Responders
Best G12C Responders
Intermediate PDAC Responders

A

B

C

G12C
G12D
Other

Mutation Types:

Tumor Types:

NSCLC
CRC
PDAC

2  Cytotoxicity values were obtained from Holderfield et al., 2024. 
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clusters representing responders or non-responders to panRAS inhibition emerged 
based on mutational and histological profiles (Figure 3). This demonstrated that the 
multimodular architecture of krasID can account for tissue- or mutation-specific 
tumor biologies, highlighting the potential to customize response biomarkers across 
different histologies, mutational subtypes, and drug targets.

3.3  Real-world patient study

This section details the utility of krasID in evaluating real-world patient responses to 
Amgen’s KRAS G12C inhibitor, sotorasib (Lumakras). The results highlight three key 
points:

1.	 Predicting patient response to KRASi: A krasID predictor trained using 5 bio-
modules optimized for G12C NSCLC human subjects accurately predicted clini-
cal response in a real-world dataset (ROC AUC = 0.81), demonstrating its utility 
as a clinically informative phenomarker. 

2.	 Predicting duration of response: A krasID predictor trained using 17 biomodules 
accurately classified patients into short- and long-term responders (<6 and >6 
months, respectively) (AUC ROC = 0.80). 

3.	 Interpreting krasID predictions: Biomodule scores offered potentially clinically 
actionable insights into sotorasib response and progression in a longitudinal co-
hort (pre- and post-treatment samples). 

This study analyzed a real-world cohort of 66 patients with KRAS G12C-mutated 
NSCLC who had received at least 4 weeks of sotorasib treatment. The real-world 
sotorasib-treated cohort closely mirrored the demographics of the multicenter, 
single-group, open-label sotorasib clinical trial, CodeBreak 1003, suggesting that 
results may be extrapolated to the clinical trial cohort. Longitudinal data were 
available for five patients with biopsies at the time of relapse.  Given constraints on 
the metadata associated with real-world datasets, this study used time-on-treatment 
(ToT) as a surrogate for progression-free survival, and defined clinical benefit as 
having achieved a complete response (CR), partial response (PR), or stable disease 
(SD) as the best overall response. 

Together, these findings illustrate that the utility of krasID is not limited to baseline 
patient selection. Rather, it functions as a dynamic, biology-informed guide to 
managing KRAS inhibitor therapy across the treatment journey. For patients, this 
means more personalized care and the possibility of extended responses. For clinical 
teams and developers, it means actionable hypotheses to optimize treatment strategy 
and design next-generation trials.

3  Skoulidis F., et al., Sotorasib for Lung Cancers with KRAS p.G12C Mutation. N Engl J Med. 2021 Jun 24;384(25):2371-2381.
     doi: 10.1056/NEJMoa2103695. PMID: 34096690 and https://clinicaltrials.gov/study/NCT03600883
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3.3.1  Predicting patient response to KRASi 

We evaluated the performance of a number of algorithm architectures and module 
combinations in predicting response to the aforementioned real-world sotorasib 
dataset. We hypothesized that the increased complexity and heterogeneity of in vivo 
tumor biology would require more sophisticated module composition, as compared 
to the preclinical use case. 

  T A B L E  4 

The top-performing model was a regression algorithm that incorporated five krasID biological mod-
ules, including the dependency and activation modules, to infer clinical response. It accurately predict-
ed responders in ~80% of the cases, an improvement compared to the measured response rate (49%) 
with the standard-of-care KRAS biomarker, which relies on mutational assessment alone. Dummy 
model metrics are provided to benchmark the classifier's performance, assuming random predictions 
aligned with the dataset's class distribution. The performance of the dummy model is expected to be 
at the same level as predicting response based on genotype alone (i.e., a coin flip). 

Accuracy Precision Recall Specificity F1 Score ROC AUC

Clinical Response 0.79 0.84 0.68 0.89 0.75 0.81

Baseline (Dummy) 0.55 0.51 0.58 0.51 0.55 0.55

Accuracy: Number of correct predictions / Total number of predictions
Precision: Positive Predictive Value (PPV) = True biomarker responses / Total predicted biomarker response
Recall: Sensitivity = True biomarker responses / Total actual responses
Specificity: True Negative Rate = True biomarker non-responses / Total actual non-responses
F1 Score: Harmonic mean of precision and recall
AUROC: Area Under the Receiver Operating Curve

  F I G U R E  4 

Probability of clinical response for a sotorasib-treated NSCLC cohort. Individual data points repre-
sent a single patient colored by clinical outcome. 
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To train and fine-tune the patient classifier, a total of 20 distinct biomodules were 
created to reflect both KRAS intrinsic and extrinsic tumor biologies. Modules served 
as features for logistic regression with an L2 penalty to predict clinical response 
(CR + PR). Regularization was optimized using 10-fold, 3x repeated stratified cross-
validation (CV) with log loss as the metric. The model was then evaluated using leave-
one-out CV. The best-performing model's performance metrics are provided in Table 

4. The classifier outputs a continuous probability of response that can be cleanly 
thresholded, allowing for a simple biomarker designation of krasID-HIGH or LOW 
for each patient (Figure 4). Thresholds may be established empirically to optimize 
sensitivity, specificity, or overall accuracy, or can be set to achieve pre-specified rates 
of inclusion/exclusion.  

Among the 66 patients, an objective response (CR or PR) occurred in 31 patients 
(47%), while clinical benefit (disease control indicated by a CR, PR, or SD) was 
observed in 48 patients (73%). A Kaplan-Meier estimate of time on treatment using 
Genialis krasID to predict patient response revealed significant differences in median 
treatment durations: 472 days for those with predicted clinical response (krasID-
High) compared to 173 days for those with no predicted clinical benefit (krasID-
Low) (Hazard Ratio = 0.342, p-value = 0.002). The median treatment duration for all 
patients, selected by mutation status but not stratified by krasID, was 221 days (Table 

5; Figure 5). 

  T A B L E  5 

Comparison of sotorasib clinical activity between CodeBreak100 clinical trial and real-world cohort 
with krasID-Low and krasID-High subsets.

Codebreak100 Present Study krasID-Low krasID-High

ORR - % 37.10% 47.00% 22.00% 88.00%

Best Overall Response - no. (%) 124 66 41 25

CR 4 (3.2%) 4 (6.1%) 1 (2.4%) 3 (12.0%)

PR 42 (33.9%) 27 (40.9%) 8 (19.5%) 19 (76.0%)

SD 54 (43.5%) 17 (25.8%) 15 (36.6%) 2 (8.0%)

PD 20 (16.1%) 18 (27.3%) 17 (41.5%) 1 (4.0%)

Not evaluable 4 (3.2%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

Time on treatment (ToT) 
median (range) - days

167
(6 - 542)

221
(49 - 830)

173
(49 - 830)

472
(96 - 721)

Progression free survival 
median - days 207

PFS or ToT* after 3 months ~70% 83% 72% 100%

PFS or ToT* after 6 months 52% 63% 43% 92%

PFS or ToT* after 12 months ~30% 35% 24% 51%
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  F I G U R E  5 

Kaplan-Meier survival curves for time on treatment as stratified by Genialis krasID

66 29 10 7 1 Baseline (all)

41 9 2 2 1 krasID-Low

25 20 8 5 0 krasID-High

At risk:

Time on sotorasib (days)
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N: 66/66, median = 221 days

N: 41/66, median = 173 days

N: 25/66, median = 472 days

Hazard Ratio (95%, CI) = 0.342 (0.169-0.692)

P-Value (2-Sided) = 0.00281

In conclusion, krasID predictor stratified KRAS-mutated patients into responders 
and nonresponders showing not only statistically but also clinically meaningful 
improvement of patient selection when compared to the standard of care biomarker. 

3.3.2  Predicting duration of response

Examining the relationship between krasID status and time on treatment in this 
sotorasib in the previous use case revealed that krasID status may provide insights 
into the duration of response. Specifically, among krasID-High patients, 92% remained 
responsive at 6 months (compared to 72.8% of those with confirmed response in 
CodeBreaK2004), and 51% remained responsive at 12 months (compared to 50.6% 
of those with confirmed response in CodeBreaK200).

4  de Langen AJ et al., Sotorasib versus docetaxel for previously treated non-small-cell lung cancer with KRASG12C mutation: a randomised, 
     open-label, phase 3 trial. Lancet. 2023 Mar 4;401(10378):733-746.
     doi: 10.1016/S0140-6736(23)00221-0. PMID: 36764316. and https://clinicaltrials.gov/study/NCT04303780
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To test if krasID could predict durability, we tuned another predictor using 17 
biomodules (see also section 3.3.3. or details) that stratified patients into “<6 months” 
vs. “>6 months” time-on-treatment groups. It achieved AUROC = 0.80, significantly 
outperforming random baseline models and mutation-only selection strategies 
(Table 6). Patients predicted to remain on therapy >180 days had a median time on 
treatment of 337 days, compared to 126 days for those predicted to progress earlier. 
The stratification was statistically significant (p = 6.15 × 10⁻⁵).

  T A B L E  6 

Predictor performance for duration of response to sotorasib. The 180-day cutoff was chosen based on 
the 5.6-month median PFS in CodeBreaK 200, reflecting a clinically relevant milestone for progres-
sion. Individual biological module scores served as input features for a classification model. Tuning and 
model refinement were performed with nested leave-one-out cross-validation, resulting in a model 
that achieved an AUROC of 0.80.

Accuracy Precision Recall Specificity F1 Score ROC AUC

ToT classifier at 
180 days 0.78 0.78 0.69 0.85 0.73 0.80

Dummy model 0.51 0.44 0.42 0.58 0.43 0.48

Accuracy: Number of correct predictions / Total number of predictions
Precision: Positive Predictive Value (PPV) = True biomarker responses / Total predicted biomarker response
Recall: Sensitivity = True biomarker responses / Total actual responses
Specificity: True Negative Rate = True biomarker non-responses / Total actual non-responses
F1 Score: Harmonic mean of precision and recall
AUROC: Area Under the Receiver Operating Curve
ToT: Time on Treatment
Dummy control models are used by predicting the most common class (‘common class strategy’) or guessing randomly based on the class 
frequencies ‘(stratified class strategy’). Shown is a stratified class strategy that best reflects the real class distribution. 

This case study highlights a unique value of Genialis krasID in clinical development. By 
going beyond simple mutation status, the model demonstrated the ability to forecast 
the durability of response. This capability is critical for drug developers who wish 
to use biomarkers to enrich trials for durable responders. For example, if a krasID 
sotorasib biomarker were available for use during phase 2 or beyond, it could power 
a similarly sized trial with significantly lower enrollment. Achieving 90% power at a 
0.05 significance level for the CodeBreak 200 trial required 333 patients (krasG12C 
mutation alone selected at an HR of 0.65), compared to 82 patients with krasID 
stratification at a postulated hazard ratio of 0.40. This results in an approximately 
four-fold reduction in the number of patients required for enrollment (Figure 6). 
Although the FDA is unlikely to approve a Phase 3 trial design with fewer than 
100 patients, such biomarker stratification could either provide increased power 
(>99%) or lead to accelerated approval based on an early interim analysis of krasID 
biomarker-stratified patients. In monetary terms, conservative estimates ($80k per 
patient, $1M operational) posit $25M for CB200 compared to ~$7.6M for a krasID-
stratified trial, representing a 3.3-fold cost reduction.
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  F I G U R E  6 

Required sample size for the CB200 trial and a trial using krasID (lower hazard ratio). Customizing 
krasID to a G12C inhibitor results in a 4-fold reduction in the total number of patients required to 
power a non-biomarker stratified trial, translating to an estimated 3-fold cost reduction. 
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3.3.3  Interpreting krasID predictions

While predicting which patients will respond to KRAS inhibitors and for how long 
is a core function of krasID, helping understand why patients eventually progress 
is equally important. Resistance biology defines not only the clinical durability of 
KRAS inhibitors but also the rationale for next-line or combination therapies. By 
profiling patients both before and after treatment, the krasID predictor sheds light 
on biological shifts that occur during therapy, uncovering mechanisms of resistance 
that are invisible to DNA mutation testing. This is critical for clinicians, who must set 
expectations and plan treatment sequencing.

A subset of five patients in the real-world sotorasib cohort provided both pretreatment 
and post-progression biopsies. These longitudinal samples were analyzed with krasID, 
focusing on fold changes in biomodule activity scores between the two time points 
(Figure 7). This approach enabled identification of both shared and patient-specific 
resistance mechanisms, while preserving visibility into KRAS-driven biology. 
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We highlight two case examples: 

•	 Patient 2 did not respond to sotorasib. Post-treatment profiling revealed in-
creased MAPK activity and reduced KRAS dependency, suggesting ineffective 
target modulation by sotorasib. Elevated TGFβ, VEGF, and Hypoxia modules in-
dicate a shift toward extrinsic microenvironmental resistance. It may be advis-
able to discontinue sotorasib therapy. The patient may benefit from targeting 
bypassed stromal/angiogenic pathways (e.g., TGFβ, VEGF, HIF-2 inhibitors).

•	 Patient 5 first achieved a partial response (PR) to sotorasib, then progressed. 
Post-treatment samples showed decreased MAPK and KRAS dependency 
scores consistent with on-target drug activity. However, increased PI3K, WNT/
β-catenin, and Immune module scores suggested adaptive resistance via bypass 
signaling. Patient may still be benefiting from sotorasib, and discontinuation risks 
MAPK rebound. A combination approach targeting upregulated bypass pathways 
while maintaining KRAS inhibition may be warranted to prolong clinical benefit.

  F I G U R E  7 

krasID biomodule score changes may translate into potentially actionable decisions.
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4. Getting started with Genialis krasID

Genialis krasID is not a single phenomarker algorithm; it is a predictor platform. 
While Genialis can certainly run existing predictors on new data, your clinical devel-
opment program will likely benefit from a tailored implementation incorporating your 
experimental data and a compound-specific selection of biology-informed features 
(biomodules). This yields a predictor tuned to your drug, experimental system, and 
disease indication. This chapter explains how we configure a new predictor in collab-
oration with our partners, and how those predictors become usable phenomarkers to 
guide drug development and patient care.

4.1  Training a new predictor

The process of creating a new krasID predictor follows a structured, iterative work-
flow designed to ensure interpretability, reproducibility, and clinical utility.

1.	 Biomarker scoping. Every predictor begins with a clear problem statement: 
which biological or clinical question should the model answer? For example, 
forecasting duration of response to a KRAS inhibitor, stratifying responders vs. 
non-responders, or identifying resistance mechanisms. Available outcome data 
(clinical benefit, IC₅₀ values, survival times) are curated into balanced training 
sets, while potential confounders and outliers are carefully managed.

2.	 Feature Selection. Gene expression data are transformed into biomodule scores 
by the Genialis Supermodel. Over two dozen biomodules, each capturing a spe-
cific aspect of KRAS-related or -adjacent biology, are evaluated. Feature selec-
tion combines biology-guided curation (modules related to drug MoA) with da-
ta-driven ranking (regularization, recursive elimination). Poorly reproducible or 
non-transferable modules are removed.

3.	 Model Training. Several machine learning approaches are tested, from interpre-
table linear models (e.g., logistic regression, ElasticNet) to non-linear methods 
(tree ensembles, neural networks). Models are evaluated for accuracy, stability, 
convergence, and explainability.

4.	 Internal Validation. Performance is estimated using nested k-fold or leave-one-
out cross-validation, which prevents optimistic bias by separating model tuning 
from evaluation. 

5.	 External Validation. Performance is estimated using hold-out or blinded valida-
tion sets.

6.	 Refinement. As new data become available or as additional biomodules mature, 
the model is revisited. Feature sets may be updated, architectures adjusted, and 
new validation runs performed. Predictors evolve with evidence, ensuring they 
remain both state-of-the-art and clinically reliable.
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4.2  Technical implementation of biomarker products 

When a predictor developed with krasID matures, it is packaged together with its 
dependencies into a phenomarker product, a ready-to-use, end-to-end software 
module that converts raw transcriptomic data into actionable predictions. Typically, 
biomarker products are delivered as a Python package with a command-line inter-
face or as a Docker container for easy deployment.

A biomarker product typically includes the following components (Figure 8):

•	 Input handling: Accepts raw RNA-seq data or preprocessed expression matrices.

•	 Preprocessing: Performs normalization, batch-effect correction, and drift mon-
itoring according to a proprietary harmonization system to ensure consistency 
across datasets.

•	 Biomodule scoring: Projects expression data into biologically interpretable bio-
module scores using a subset of the Genialis Supermodel.

•	 Predictor: A trained ML model that generates categorical predictions (e.g., Re-
sponder/Non-Responder) or continuous predictions (e.g., time-on-treatment), 
probability scores, and optional covariate-adjusted outputs (such as dose consid-
eration). Results can be provided in a standalone report or formatted for down-
stream analysis.

If you are developing a KRAS inhibitor or a combination strategy,  
Genialis invites you to explore how krasID can accelerate your program. 

The first step is simple: partner with us to train and test a predictor on 
your data. From there, we will help refine it into a clinical phenomarker that 
differentiates your compound and ensures approval of your drug.

www.genialis.com
biomarkers@genialis.com

Know your patient
Know your drug

www.genialis.com biomarkers@genialis.com

Call to collaborate

  F I G U R E  8 

Each krasID predictor can be bundled with all necessary dependencies into a standalone software 
package that accepts RNA-seq data as input and produces krasID scores with a single command.
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