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1. Introduction: Questions that matter

RAS mutations are among the most common oncogenic drivers in human cancer,
occurring in more than a quarter of all cases worldwide. The approval of KRAS
inhibitors such as sotorasib and adagrasib has ushered in a new era of targeted
therapy. Yet the promise of these drugs has been tempered by reality: fewer than

half of patients benefit, and for most that do, responses are modest or short-lived.

For translational researchers and clinical developers, this raises urgent and practical

questions:

e Which patients will actually benefit from my KRAS inhibitor, and why?
e How long will their response last?

e Can we predict a priori mechanisms that confer potential innate or adaptive

resistance?
e« Why do some patients progress early despite the mutation being “targetable”?
e Can we identify rational combinations to extend the benefit?

e Can we design trials that are faster, leaner, and more likely to succeed?

Traditional DNA-based biomarkers cannot provide these answers. KRAS mutation
profiling is standard-of-care, but it only indicates whether a patient’s tumor harbors
a KRAS variant. It does not capture whether that tumor is truly dependent on KRAS
signaling, nor does it explain why many mutation-positive patients fail to respond.
Even among responders, KRAS mutation status offers no insight into durability
or resistance. More elaborate studies of co-mutation spectra hint at resistance

mechanisms, but have yet to prove predictive in any clinical setting.

RNA, by contrast, provides a snapshot of the tumor’s active biology. It reflects
not just mutational potential but the actual cellular states, pathway activity, and
microenvironmental context that determine whether a KRAS inhibitor will work.
When paired with explainable Al, RNA biomarkers transform raw transcriptomic
data into clinically meaningful insights that address the questions researchers and

clinicians most urgently need answered.

Genialis™ krasID was built precisely for this purpose. By modeling core KRAS biology
and its bypass mechanisms, krasID moves beyond mutation status to predict treatment
response, forecast duration of benefit, and illuminate resistance biology. kraslID is a
modular, explainable, and customizable platform that derives mechanistic insight,
guides rational trial design, and supports clinical decision-making.

This whitepaper presents the science behind krasID and highlights case studies across
preclinical and clinical settings. It shows how this platform can help drug developers

leverage a greater understanding of the tumor's biology into better clinical outcomes.

krasID is a modular,
explainable, and
customizable
platform that
derives mechanistic
insight, guides
rational trial design,
and supports clinical
decision-making.



2. A platform for compound-specific KRASi
phenomarkers

For more than a decade, precision oncology has relied primarily on DNA mutation
testing to guide treatment. In the KRAS field, the emergence of G12C inhibitors
transformed this genetic information into therapeutic action: if the mutation is
present, prescribe the drug. But as clinical experience has shown, the presence of
a mutation is not sufficient for response, and response is often not durable. What
is missing is a biomarker that captures not just the potential for a drug to bind its
target, but also the actual tumor biology that governs response and resistance.
Gene expression profiling offers such a solution by measuring pathway activity,

microenvironmental forces, and the tumor’s dependency on KRAS signaling.

The solution is a new class of biomarkers, RNA phenomarkers, that approximate
biological states and phenotypes rather than just genetic variants. Genialis krasID
is the first algorithm platform designed specifically to develop such phenomarker
algorithms for KRAS inhibitors (KRASi) in order to derive mechanistic insights into
KRAS:i biology or predict response to KRASI in preclinical models and patients.

2.1 krasID delivers RNA phenomarkers

RNA is emerging as the key clinical analyte powering a new class of biomarkers that
serve as highly accurate patient classifiers. Historically, RNA has been seen as less
clinically tractable due to assay costs, sample variability, and data reproducibility
issues. These concerns have been addressed through advancements in RNA
sequencing technology and analytical processing. RNA sequencing has become
highly reliable, affordable, and commoditized, making its use in clinical applications
more attractive.

Standardized methods for sample preservation, nucleic acid extraction, and
sequencing preparation contribute to high reproducibility across labs, even with small
archival samples. The availability of sequencing services means RNA-seq is integrated
into clinical workflows and can be reliably extracted and quantified from FFPE slides
without needing fresh biopsies or frozen tissue. The ability to multiplex different
tests from the same analyte and decreasing sequencing costs make transcriptomic
biomarkers cost-effective for complex disease diagnosis and clinical R&D. Advances
like FoundationOne®RNA and Tempus XR demonstrate the technical and commercial

feasibility of this approach in clinical diagnostics.

The era of RNA phenomarkers has arrived.

The solutionis
anew class of
biomarkers,

RNA phenomarkers,
that approximate
biological states and
phenotypes rather
than just genetic
variants.



Traditional DNA biomarkers

Genialis RNA biomarkers

DNA represents potential
biological states, or what a cell
could do

Narrow scope:
one status, one gene

Binary Q+A:
Is the mutation present?

Property of the drug target

Is there a target that the drug
can bind to?

Are you eligible for a certain drug?

Able to identify patients that
may receive drug

NO information on treatment

duration or combination strategies

RNA represents actual biological
states, or what a cell does

Hundreds-to-thousands of genes
accounted for by quantitative
signatures comprising their
expression and variants

Broad scope:
Complex multi-modal and multi-
function analysis

Complex Q+A:
Will the underlying biology of the
tumor respond to therapy?

Biology of a patient tumor
Will this drug actually work?

Is it meaningful to a particular tumor?

Able to identify patients that
should receive drug

AND

forecast the response to that drug

Stratifies patients based on treatment
duration and survival;

Provides actionable strategies for
combination treatment

2.2 krasID overcomes challenges of predictive Al in emerging therapies

Artificial intelligence (Al) stands to transform precision medicine by using large
'omics datasets to develop evermore complete and precise biomarkers powered by

sophisticated machine learning (ML) algorithms. However, several major obstacles

remain to introducing Al-based tools into clinical decision making:

1. Most Al tools lack explainability of the selected features (so-called black-box

methods), and are therefore less attractive to regulators and physicians.

2. Most clinical ‘omics datasets contain vastly more measurements (e.g., genes) and

orders of magnitude fewer patients, which leads to overfitting and reduced re-

producibility.

<4 TABLE 1

The case for RNA phenomarkers.



3. Definitionally, novel (investigational) therapeutics have not been administered to
many patients; thus, the available clinical data is limited and often lacks response
endpoints. Therefore, one cannot readily train an algorithm to learn treatment
outcome from a population sample of meaningful size.

Together, these challenges impede the development of Al-powered, widely-used,
reproducible, and clinically accepted predictors. Genialis kraslID is different.

Unlike black-box methods, Genialis krasID combines human expertise with an
explainable Al architecture to capture the complexity of KRAS biology and reduce
it to clinical utility. krasID is built on the Genialis™ Supermodel framework, a large
molecular model (LMM) that transforms raw RNA-seq data into interpretable
biomodules. Often Al models themselves, biomodules are algorithmic representations
of diverse biological mechanisms, pathways, and relationships, each representing a
specific aspect of biology and using different input genes. Some biomodules directly
relate to KRAS (e.g., dependency, MAPK activation), while others involve external
factors with indirect implications (e.g., immune system, tumor microenvironment,
hormone signaling, etc). The Genialis Supermodel comprises a comprehensive library
of cancer biomodules, from which a select few may be combined into a phenomarker
algorithm for any specific prediction task. Computational data-driven methods are
used in concert with “expert” (manual) filters derived from our understanding of cancer
biology for this feature selection. Compared to using gene expression values directly
for prediction, the biomodule feature set is dramatically reduced in dimensionality
and carries relevant and interpretable biological signal, making it possible to derive
accurate models (predictors) from small experimental or clinical cohorts.

Gene expression

Biomodules

Predictors

chemolD

krasID

A single predictor is thus an ensemble model that integrates a subset of these
biomodules to generate a robust phenomarker score, which is the probability of a
particular outcome to KRAS inhibition (Figure 1). Different kinds of predictors can
be trained, for example, for predicting the probability of response to therapy or the

4 FIGURE 1

Dimensionality reduction

is achieved by combining
hundreds of gene expression
values into a handful of
biomodule scores which are then
used to train new predictors or
make predictor calls.

Note: similar to krasID,
chemolD is a platform

for developing predictors

for chemotherapy.



duration of response. The exact composition of a krasID predictor can be fine-tuned
for particular compounds, mutation profiles, and disease histologies. The resulting
predictor scores follow a bimodal distribution that ensures a clear decision boundary
between krasID-High vs. krasID-Low, regardless of the specific numerical threshold.
Additionally, krasID provides per-sample scores for each biomodule, offering deeper
insights into each patient's tumor landscape.
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Variant identification Gene expression Survival Additional biologies
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Response to KRAS inhibitor

A FIGURE 2

Genialis krasID integrates multiple biomodules to create predictors, e.g., for predicting response to
KRAS inhibition. Left - Gene expression data is measured by RNA sequencing of tumor tissue (includ-
ing FFPE samples). Raw RNA-Seq data are processed to extract normalized gene expression profiles
and identify genomic variants. Middle - Preprocessed data serves as input for a number of KRAS-re-
lated or KRAS-adjacent biomodules. Biomodule output is then used as input for an Al-based predictor.
Right - The output of the predictor is a score, e.g., the probability of response to KRASi therapy.

2.3 Biomodules yield customizable and interpretable predictors

kraslD is built on the Genialis Supermodel framework. It is a large molecular model
that transforms raw RNA-seq data into interpretable biomodule scores. Biomodules
model the central tenets of cancer biology, such as those described as Hallmarks of
Cancer?. These Hallmarks include such biologies as resisting cell death, sustaining
proliferative signaling, and evading immune surveillance. Modules range in
complexity from measuring pathway signaling activity to inferring the immune status
of the tumor microenvironment. Genialis trains and validates these biomodules using
a repository of hundreds of thousands of public and proprietary datasets spanning
various model systems, including preclinical models (e.g., cell lines, xenografts) and
real-world tumor biopsies collected from ethno-geographically diverse populations.
This approach ensures each module is informative, unbiased, and transferable across
multiple potential use cases.

A subset of these modules can be used individually for surveying specific aspects
of tumor biology. Alternatively, a careful selection of these modules, e.g., based
on the mechanism of action of a drug, can be used as input features for modeling

1 Hanahan D., Hallmarks of Cancer: New Dimensions. Cancer Discov. 2022 Jan;12(1):31-46.
doi: 10.1158/2159-8290.CD-21-1059. PMID: 35022204.
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predictors, e.g., the response to a specific therapeutic target. This flexible approach
assigns specific combinations of modules to particular data types, drug mechanisms,
or intended uses (Table 2).

The modular design of krasID means it is not a single biomarker, but a platform for
building custom predictors to serve as phenomarkers. Different KRAS inhibitors
exploit different mechanisms, and krasID can be tailored to each. Picking from a
couple of dozen carefully selected and validated biomodules, new predictors can be
rapidly configured and fine-tuned to maximize predictive accuracy for specific drug

development programs.

Unlike black-box Al, kraslID is inherently explainable. Each biomodule corresponds
to a tangible mechanism, pathway, or phenotype. When predictors are built on top
of these biomodules, predictions are transparent and biologically grounded. This
foundation sets the stage for the next chapter, where we show how kraslID performs

in practice across preclinical studies and real-world patient cohorts.

Biomodules used for
response modeling:

V¥V TABLE 2
A selection of krasID biomodules used to model predictors highlighted in Chapter 3 - Case studies = -
(3] O wn
c = c < =
58 gz £
O v U o—
Biomodule Biomodule Description Biomodule Construction al as (@]
KRAS Infers the dependency of A 10 gene feature set selected using a linear v v v
dependency cancer cells on KRAS for regression model with recursive feature
survival and proliferation. elimination and ElasticNet regularization.
Validation used repeated nested cross-
validation.
MAPK/ERK Measures the amount of ~500 gene feature set selected using v v v
activity MAPK signaling in cancer a weighted linear regression model
cells. incorporating robust and stably expressed
gene sets. Validation used leave-one-out
cross-validation.
PI3K Measures the amount of ~500 gene feature set selected using v v
activity PI3K signaling in cancer a weighted linear regression model
cells. incorporating robust and stably expressed
gene sets. Validation used leave-one-out
cross-validation.
TP53 Measures the amount of ~500 gene feature set selected using - v
activity TP53 activity in cancer a weighted linear regression model
cells. incorporating robust and stably expressed
gene sets. Validation used leave-one-out
cross-validation.
Immune Provides an assessment of A 13 gene feature set comprising stably - - v
activity the tumor microenvironment annotated genes was used to compute
immune status. an immune activation score using a linear
model.
Other 20+ modules capturing “Explainable” machine learning leveraging - - v
biologies aspects of intrinsic (e.g., linear, logistic, and foundation-modeling
apoptosis, hormone signaling), approaches trained on Genialis™ Expressions
and extrinsic KRAS biology library of >1M harmonized whole
(e.g., angiogenesis, TGF-beta transcriptomic records

signaling)




3. Case studies

This chapter provides three examples of krasID in action, predictors trained for

different drugs and experimental setups.

1. Preclinical Proof-of-Concept: A 2-biomodule predictor accurately predicting in
vitro and in vivo responses to KRAS G12C inhibitors (sotorasib, adagrasib, etc.)

in lung cancer models.

2. Pan-Cancer Analysis: Trained using 3 core biomodules, this predictor stratified
responsive vs. resistant cell lines across NSCLC, PDAC, and CRC for a novel pan-
KRAS inhibitor.

3. Real-World Patient Study: In a cohort of 66 real-world KRAS G12C-selected
NSCLC patients treated with sotorasib, a 5-module krasID model predicted not
only which patients responded, but also for how long. Predictor calls can be clin-

ically interpreted.

3.1 Preclinical proof of concept

The two biomodules used in this predictor are KRAS dependency and MAPK
pathway activation. A logistic regression classifier to predict low- or high-IC50
values was trained on published IC50 values measured from various sources. We
hypothesized that preclinical models reliant on KRAS-mediated oncogenic signaling

for proliferation and survival are those most susceptible to KRAS inhibition.

VvV TABLE 3

Performance of a predictor trained on two kraslD biomodules (dependency and activation) predicting
durable KRAS inhibitor response in three types of preclinical models. Short-term (e.g., IC50) and sus-
tained cytotoxicity (e.g., PRISM Repurposing dataset) metrics were classified into 'low' and 'high' cat-
egories via K-means clustering for each model system. A durable response was defined when a model
system exhibited both short-term and prolonged cytotoxicity.

Mechanism  Preclinical

Drug Name Company of Action Model System N* Sensitivity Specificity AUROC
Sotorasib Amgen G12C-OFF 2D 11 1.0(5/5) 1.0(6/ 6) 1
RMC-6291 Revolution Medicine G12C-ON 2D 15 1.0(7/7) 0.88(7/8) 0.96
Adagrasib Bristol Myers Squibb  G12C-OFF 2D 12 1.0(6/6) 0.67 (4 / 6) 0.94
Adagrasib Bristol Myers Squibb ~ G12C-OFF 3D 12 0.88(7/ 8) 0.75(3/ 4) 0.81
Adagrasib Bristol Myers Squibb ~ G12C-OFF  Xenograft 10 1.0(5/5) 0.8(4/5) 0.96
All drugs

(Genialis krasID) - - All 67 0.97(33/34) 0.85(28/33) 0.94
All drugs

By Vel All 67 0.53(18/34) 0.64(21/33) 0.59

*Displayed performance metrics on preclinical model systems that have more than 10 data points, as well as on the entire dataset.

2D: 2-dimensional cell culture | 3D: 3-dimensional cell culture | N: Available models | AUROC: Area Under the Receiver Operating Curve



To test this hypothesis, we evaluated publicly available cytotoxicity responses to
KRAS G12C-inhibitors (Amgen's sotorasib, Bristol Myers Squibb's adagrasib, and
Revolution Medicine's RMC-6291) across various preclinical non-small cell lung
cancer (NSCLC) model systems, including 2D/3D cell cultures and xenografts. On
average, the predictor accurately stratified cell line responders, achieving a receiver
operating characteristic (AUROC) of 0.94 compared to 0.59 for a dummy “null”
model (Table 3).

3.2 Pan-cancer analysis

Identifying responders to various G12C inhibitors using intrinsic biological modules
suggested the applicability of krasID across different histologies and mutation
settings. To test this, we tailored a model on cytotoxicity values measured in 161
NSCLC, PDAC, and CRC cell lines treated with the RevMed PanRAS inhibitor
RMC7977. Responses were evaluated using principal component analysis (PCA) with
three krasID modules: KRAS dependency, Activation (MAPK pathway activity), and
Survival (PI3K pathway activity). From a projection of these three modules, distinct
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A FIGURE 3

PCA showing cytotoxicity responses to RAS(ON) multi-selective inhibitor in NSCLC, PDAC, and
CRC cell lines. Responses are stratified using three krasID modules. Datapoint size corresponds to
RMC7977 sensitivity.?

2 Cytotoxicity values were obtained from Holderfield et al., 2024.
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clusters representing responders or non-responders to panRAS inhibition emerged
based on mutational and histological profiles (Figure 3). This demonstrated that the
multimodular architecture of krasID can account for tissue- or mutation-specific
tumor biologies, highlighting the potential to customize response biomarkers across
different histologies, mutational subtypes, and drug targets.

3.3 Real-world patient study

This section details the utility of krasID in evaluating real-world patient responses to
Amgen’s KRAS G12C inhibitor, sotorasib (Lumakras). The results highlight three key
points:

1. Predicting patient response to KRASi: A krasID predictor trained using 5 bio-
modules optimized for G12C NSCLC human subjects accurately predicted clini-
cal response in a real-world dataset (ROC AUC = 0.81), demonstrating its utility
as a clinically informative phenomarker.

2. Predicting duration of response: A krasID predictor trained using 17 biomodules
accurately classified patients into short- and long-term responders (<6 and >6
months, respectively) (AUC ROC = 0.80).

3. Interpreting kraslID predictions: Biomodule scores offered potentially clinically
actionable insights into sotorasib response and progression in a longitudinal co-
hort (pre- and post-treatment samples).

This study analyzed a real-world cohort of 66 patients with KRAS G12C-mutated
NSCLC who had received at least 4 weeks of sotorasib treatment. The real-world
sotorasib-treated cohort closely mirrored the demographics of the multicenter,
single-group, open-label sotorasib clinical trial, CodeBreak 100°, suggesting that
results may be extrapolated to the clinical trial cohort. Longitudinal data were
available for five patients with biopsies at the time of relapse. Given constraints on
the metadata associated with real-world datasets, this study used time-on-treatment
(ToT) as a surrogate for progression-free survival, and defined clinical benefit as
having achieved a complete response (CR), partial response (PR), or stable disease
(SD) as the best overall response.

Together, these findings illustrate that the utility of krasID is not limited to baseline
patient selection. Rather, it functions as a dynamic, biology-informed guide to
managing KRAS inhibitor therapy across the treatment journey. For patients, this
means more personalized care and the possibility of extended responses. For clinical
teams and developers, it means actionable hypotheses to optimize treatment strategy
and design next-generation trials.

3 Skoulidis F., et al., Sotorasib for Lung Cancers with KRAS p.G12C Mutation. N Engl J Med. 2021 Jun 24;384(25):2371-2381.
doi: 10.1056/NEJM0a2103695. PMID: 34096690 and https://clinicaltrials.gov/study/NCT03600883
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3.3.1 Predicting patient response to KRASi

We evaluated the performance of a number of algorithm architectures and module
combinations in predicting response to the aforementioned real-world sotorasib
dataset. We hypothesized that the increased complexity and heterogeneity of in vivo
tumor biology would require more sophisticated module composition, as compared

to the preclinical use case.

V TABLE 4

The top-performing model was a regression algorithm that incorporated five krasID biological mod-
ules, including the dependency and activation modules, to infer clinical response. It accurately predict-
ed responders in ~80% of the cases, an improvement compared to the measured response rate (49%)
with the standard-of-care KRAS biomarker, which relies on mutational assessment alone. Dummy
model metrics are provided to benchmark the classifier's performance, assuming random predictions
aligned with the dataset's class distribution. The performance of the dummy model is expected to be
at the same level as predicting response based on genotype alone (i.e., a coin flip).

Accuracy Precision Recall Specificity F1Score ROCAUC

Clinical Response 0.79 0.84 0.68 0.89 0.75 0.81

Baseline (Dummy) 0.55 0.51 0.58 0.51 0.55 0.55

Accuracy: Number of correct predictions / Total number of predictions

Precision: Positive Predictive Value (PPV) = True biomarker responses / Total predicted biomarker response
Recall: Sensitivity = True biomarker responses / Total actual responses

Specificity: True Negative Rate = True biomarker non-responses / Total actual non-responses

F1 Score: Harmonic mean of precision and recall

AUROC: Area Under the Receiver Operating Curve
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Probability of clinical response for a sotorasib-treated NSCLC cohort. Individual data points repre-
sent a single patient colored by clinical outcome.
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To train and fine-tune the patient classifier, a total of 20 distinct biomodules were
created to reflect both KRAS intrinsic and extrinsic tumor biologies. Modules served
as features for logistic regression with an L2 penalty to predict clinical response
(CR + PR). Regularization was optimized using 10-fold, 3x repeated stratified cross-
validation (CV) with log loss as the metric. The model was then evaluated using leave-
one-out CV. The best-performing model's performance metrics are provided in Table
4. The classifier outputs a continuous probability of response that can be cleanly
thresholded, allowing for a simple biomarker designation of krasID-HIGH or LOW
for each patient (Figure 4). Thresholds may be established empirically to optimize
sensitivity, specificity, or overall accuracy, or can be set to achieve pre-specified rates
of inclusion/exclusion.

Among the 66 patients, an objective response (CR or PR) occurred in 31 patients
(47%), while clinical benefit (disease control indicated by a CR, PR, or SD) was
observed in 48 patients (73%). A Kaplan-Meier estimate of time on treatment using
Genialis krasID to predict patient response revealed significant differences in median
treatment durations: 472 days for those with predicted clinical response (krasID-
High) compared to 173 days for those with no predicted clinical benefit (krasID-
Low) (Hazard Ratio = 0.342, p-value = 0.002). The median treatment duration for all
patients, selected by mutation status but not stratified by krasID, was 221 days (Table
5; Figure 5).

V¥V TABLE 5

Comparison of sotorasib clinical activity between CodeBreak100 clinical trial and real-world cohort
with krasID-Low and krasID-High subsets.

Codebreak100 PresentStudy kraslD-Low krasID-High

ORR - % 37.10% 47.00% 22.00% 88.00%
Best Overall Response - no. (%) 124 66 41 25
CR 4 (3.2%) 4 (6.1%) 1(2.4%) 3(12.0%)
PR 42 (33.9%) 27 (40.9%) 8(19.5%) 19 (76.0%)
SD 54 (43.5%) 17 (25.8%) 15 (36.6%) 2 (8.0%)
PD 20 (16.1%) 18(27.3%) 17 (41.5%) 1(4.0%)
Not evaluable 4 (3.2%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
Time on treatment (ToT) 167 221 173 472
median (range) - days (6 - 542) (49 - 830) (49 - 830) (96 - 721)
E}r:gi;e:s_i(ojr; ;Sree survival 207

PFS or Tol* after 3 months ~70% 83% 72% 100%
PFS or ToT* after 6 months 52% 63% 43% 92%
PFS or ToT* after 12 months ~30% 35% 24% 51%

12
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Kaplan-Meier survival curves for time on treatment as stratified by Genialis krasID

In conclusion, krasID predictor stratified KRAS-mutated patients into responders

and nonresponders showing not only statistically but also clinically meaningful

improvement of patient selection when compared to the standard of care biomarker.

3.3.2 Predicting duration of response

Examining the relationship between krasID status and time on treatment in this

sotorasib in the previous use case revealed that krasID status may provide insights

into the duration of response. Specifically, among krasID-High patients, 92% remained

responsive at 6 months (compared to 72.8% of those with confirmed response in
CodeBreaK200%), and 51% remained responsive at 12 months (compared to 50.6%
of those with confirmed response in CodeBreakK200).

4 de Langen AJ et al., Sotorasib versus docetaxel for previously treated non-small-cell lung cancer with KRASG12C mutation: a randomised,
open-label, phase 3 trial. Lancet. 2023 Mar 4;401(10378):733-746.
doi: 10.1016/50140-6736(23)00221-0. PMID: 36764316. and https:/clinicaltrials.gov/study/NCT04303780
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To test if krasID could predict durability, we tuned another predictor using 17
biomodules (see also section 3.3.3. or details) that stratified patients into “<6 months”
vs. “>6 months” time-on-treatment groups. It achieved AUROC = 0.80, significantly
outperforming random baseline models and mutation-only selection strategies
(Table 6). Patients predicted to remain on therapy >180 days had a median time on
treatment of 337 days, compared to 126 days for those predicted to progress earlier.
The stratification was statistically significant (p = 6.15 x 107%).

V¥V TABLE 6

Predictor performance for duration of response to sotorasib. The 180-day cutoff was chosen based on
the 5.6-month median PFS in CodeBreaK 200, reflecting a clinically relevant milestone for progres-
sion. Individual biological module scores served as input features for a classification model. Tuning and
model refinement were performed with nested leave-one-out cross-validation, resulting in a model
that achieved an AUROC of 0.80.

Accuracy Precision Recall Specificity F1Score ROCAUC

ToT classifier at

180 days 0.78 0.78 0.69 0.85 0.73 0.80

Dummy model 0.51 0.44 0.42 0.58 0.43 0.48

Accuracy: Number of correct predictions / Total number of predictions

Precision: Positive Predictive Value (PPV) = True biomarker responses / Total predicted biomarker response

Recall: Sensitivity = True biomarker responses / Total actual responses

Specificity: True Negative Rate = True biomarker non-responses / Total actual non-responses

F1 Score: Harmonic mean of precision and recall

AUROC: Area Under the Receiver Operating Curve

ToT: Time on Treatment

Dummy control models are used by predicting the most common class (‘common class strategy’) or guessing randomly based on the class
frequencies ‘(stratified class strategy’). Shown is a stratified class strategy that best reflects the real class distribution.

This case study highlights a unique value of Genialis krasID in clinical development. By
going beyond simple mutation status, the model demonstrated the ability to forecast
the durability of response. This capability is critical for drug developers who wish
to use biomarkers to enrich trials for durable responders. For example, if a krasID
sotorasib biomarker were available for use during phase 2 or beyond, it could power
a similarly sized trial with significantly lower enrollment. Achieving 90% power at a
0.05 significance level for the CodeBreak 200 trial required 333 patients (krasG12C
mutation alone selected at an HR of 0.65), compared to 82 patients with krasID
stratification at a postulated hazard ratio of 0.40. This results in an approximately
four-fold reduction in the number of patients required for enrollment (Figure 6).
Although the FDA is unlikely to approve a Phase 3 trial design with fewer than
100 patients, such biomarker stratification could either provide increased power
(>99%) or lead to accelerated approval based on an early interim analysis of krasID
biomarker-stratified patients. In monetary terms, conservative estimates ($80k per
patient, $1M operational) posit $25M for CB200 compared to ~$7.6M for a krasID-
stratified trial, representing a 3.3-fold cost reduction.
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Required sample size for the CB200 trial and a trial using krasID (lower hazard ratio). Customizing
krasID to a G12C inhibitor results in a 4-fold reduction in the total number of patients required to
power a non-biomarker stratified trial, translating to an estimated 3-fold cost reduction.

3.3.3 Interpreting krasID predictions

While predicting which patients will respond to KRAS inhibitors and for how long
is a core function of kraslD, helping understand why patients eventually progress
is equally important. Resistance biology defines not only the clinical durability of
KRAS inhibitors but also the rationale for next-line or combination therapies. By
profiling patients both before and after treatment, the krasID predictor sheds light
on biological shifts that occur during therapy, uncovering mechanisms of resistance
that are invisible to DNA mutation testing. This is critical for clinicians, who must set

expectations and plan treatment sequencing.

Asubset of five patients in the real-world sotorasib cohort provided both pretreatment
and post-progression biopsies. These longitudinal samples were analyzed with krasID,
focusing on fold changes in biomodule activity scores between the two time points
(Figure 7). This approach enabled identification of both shared and patient-specific
resistance mechanisms, while preserving visibility into KRAS-driven biology.
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We highlight two case examples:

Patient 2 did not respond to sotorasib. Post-treatment profiling revealed in-
creased MAPK activity and reduced KRAS dependency, suggesting ineffective
target modulation by sotorasib. Elevated TGFB, VEGF, and Hypoxia modules in-
dicate a shift toward extrinsic microenvironmental resistance. It may be advis-
able to discontinue sotorasib therapy. The patient may benefit from targeting
bypassed stromal/angiogenic pathways (e.g., TGFB, VEGF, HIF-2 inhibitors).

Patient 5 first achieved a partial response (PR) to sotorasib, then progressed.
Post-treatment samples showed decreased MAPK and KRAS dependency
scores consistent with on-target drug activity. However, increased PI3K, WNT/
B-catenin, and Immune module scores suggested adaptive resistance via bypass
signaling. Patient may still be benefiting from sotorasib, and discontinuation risks
MAPK rebound. A combination approach targeting upregulated bypass pathways
while maintaining KRAS inhibition may be warranted to prolong clinical benefit.

Patient 1 Patient 2 Patient 3 Patient 4
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VEGF —e —o | o
WNT —— b — -—
Immune o o — -~

p53 —e ~— o— | o

2 0 2 4 2 0 2 4 2 0 2 4 2 0 2 4 -2

A FIGURE 7

krasID biomodule score changes may translate into potentially actionable decisions.
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4. Getting started with Genialis krasID

Genialis krasID is not a single phenomarker algorithm; it is a predictor platform.

While Genialis can certainly run existing predictors on new data, your clinical devel-

opment program will likely benefit from a tailored implementation incorporating your

experimental data and a compound-specific selection of biology-informed features

(biomodules). This yields a predictor tuned to your drug, experimental system, and

disease indication. This chapter explains how we configure a new predictor in collab-

oration with our partners, and how those predictors become usable phenomarkers to

guide drug development and patient care.

4.1 Training a new predictor

The process of creating a new krasID predictor follows a structured, iterative work-

flow designed to ensure interpretability, reproducibility, and clinical utility.

1.

Biomarker scoping. Every predictor begins with a clear problem statement:
which biological or clinical question should the model answer? For example,
forecasting duration of response to a KRAS inhibitor, stratifying responders vs.
non-responders, or identifying resistance mechanisms. Available outcome data
(clinical benefit, ICs, values, survival times) are curated into balanced training
sets, while potential confounders and outliers are carefully managed.

Feature Selection. Gene expression data are transformed into biomodule scores
by the Genialis Supermodel. Over two dozen biomodules, each capturing a spe-
cific aspect of KRAS-related or -adjacent biology, are evaluated. Feature selec-
tion combines biology-guided curation (modules related to drug MoA) with da-
ta-driven ranking (regularization, recursive elimination). Poorly reproducible or

non-transferable modules are removed.

Model Training. Several machine learning approaches are tested, from interpre-
table linear models (e.g., logistic regression, ElasticNet) to non-linear methods
(tree ensembles, neural networks). Models are evaluated for accuracy, stability,
convergence, and explainability.

Internal Validation. Performance is estimated using nested k-fold or leave-one-
out cross-validation, which prevents optimistic bias by separating model tuning

from evaluation.

External Validation. Performance is estimated using hold-out or blinded valida-
tion sets.

Refinement. As new data become available or as additional biomodules mature,
the model is revisited. Feature sets may be updated, architectures adjusted, and
new validation runs performed. Predictors evolve with evidence, ensuring they
remain both state-of-the-art and clinically reliable.
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4.2 Technical implementation of biomarker products

When a predictor developed with krasID matures, it is packaged together with its
dependencies into a phenomarker product, a ready-to-use, end-to-end software
module that converts raw transcriptomic data into actionable predictions. Typically,
biomarker products are delivered as a Python package with a command-line inter-
face or as a Docker container for easy deployment.

A biomarker product typically includes the following components (Figure 8):

¢ Input handling: Accepts raw RNA-seq data or preprocessed expression matrices.

e Preprocessing: Performs normalization, batch-effect correction, and drift mon-
itoring according to a proprietary harmonization system to ensure consistency

across datasets.

e Biomodule scoring: Projects expression data into biologically interpretable bio-

module scores using a subset of the Genialis Supermodel.

e Predictor: A trained ML model that generates categorical predictions (e.g., Re-
sponder/Non-Responder) or continuous predictions (e.g., time-on-treatment),
probability scores, and optional covariate-adjusted outputs (such as dose consid-
eration). Results can be provided in a standalone report or formatted for down-
stream analysis.

— Selected — Selected — Selected
= pipeline = preprocessor = biomodules @
Experimental Processed Preprocessed Biomodule
raw data expressions data data scores
A FIGURE 8

Each krasID predictor can be bundled with all necessary dependencies into a standalone software
package that accepts RNA-seq data as input and produces krasID scores with a single command.

Call to collaborate

If you are developing a KRAS inhibitor or a combination strategy,
Genialis invites you to explore how krasID can accelerate your program.

The first step is simple: partner with us to train and test a predictor on
your data. From there, we will help refine it into a clinical phenomarker that
differentiates your compound and ensures approval of your drug.

D www.genialis.com E biomarkers@genialis.com
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